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The nature of the dependence of phase on the choice of origin is clarified for the non-centrosym- 
metric space groups by means of special linear combinations of the phases, the structure invariants 
and seminvariants. The theory yields simple answers to the following questions: Which phases 
have values determined uniquely by tile crystal structure and independent of the choice of origin ? 
If the values of certain phases are specified, what phases have values which are then uniquely 
determined by the structure ? The values of which phases are to be specified in order to fix the origin 
uniquely ? 

Simple procedures for fixing the origin by suitably specifying the values of certain phases are 
described in detail. 

1. Introduction 

With the recent development of direct methods of 
phase determination the problem of choosing an origin 
by  suitably specifying the values of an appropriate 
set of phases has assumed greater importance. The 
complete solution of this problem for the centro- 
symmetric space groups by means of the structure 
invariants and seminvariants has been given in our 
Monograph (Hauptman & Karle, 1953). This paper is 
devoted to the solution of the same problem for the 
non-centrosymmetric space groups. Owing to limita- 
tions of space, only a few typical proofs are given. 
However, the definitions and theorems are here ar- 
ranged in logical order, and most of the missing proofs 
may  be readily supplied. 

A preliminary section showing the relation of this 
problem to the phase problem is given first. 

2. The phase problem 

The structure factor Fh is defined by means of 

Fh ----- [ F h ]  exp [i~h] = X + i Y ,  (2.1) 
~v/n 

X = ~" fjh~(h, x i, y/, zi),  (2.2) 
i=1 
lv/n 

r = Z fjhr/(h, xj, Yi, zl),  (2.3) 
i=1 

where N is the number of atoms in the unit cell, n is 
the order of the space group, fib is the atomic scattering 
factor, x# y~, z i are the coordinates of the j t h  atom, 
and ~ and ~ are trigonometric functions which depend 
upon the space group, e.g. for P1 

= cos 2~(hx+ky+lz ) ,  (2.4) 

~7 = sin 2x~( hx + ky + lz ) . (2.5) 

Roughly speaking, the phase problem is the problem 
of determining the phases ~h of the structure factors 

~vh, defined by  (2.1)-(2.3), given the magnitudes of 
the 2'h and the values of the fjh for a sufficiently 
large number of vectors h. 

The crystal structure alone does not, however, 
determine the values of all the phases (see, for ex- 
ample, Okaya & l~itta, 1952), because (2.1)-(2.3) 
imply tha t  an appropriate origin has been selected. 
In  fact, both the functional forms of ~ and ~7 and the 
values of the atomic coordinates xj, Yi, zj depend upon 
the choice of origin. The magnitude IFhl is, of course, 
independent of the choice of origin. However, as will 
be seen, there always exist certain linear combinations 
of the phases whose values (reduced modulo 2~, but 
always in the interval - ~  < ~ ~ g) depend upon the 
structure alone and are independent of the choice of 
permissible origin (to be precisely defined later), and 
therefore of the functional form of the structure factor 
also. In  analogy with centrosymmetric structures, we 
shall call these linear combinations of the phases the 
structure invariants. Furthermore, for a f ixed functional 
form of the structure factor (i.e. for ~ and ~7), there 
always exist certain linear combinations of the phases 
whose values (again reduced modulo 2g) depend upon 
the structure alone and are independent of the choice 
of origin permitted by the chosen functional form for 
the structure factor. These linear combinations of the 
phases will be called the structure seminvariants. I t  
will be seen tha t  the structure seminvariants are in- 
dependent of the chosen fixed functional form for the 
structure factor. While the structure seminvariants 
are determined by the space group and the choice of 
unit cell, their values, for a given structure, do depend 
on the chosen functional form for the structure factor. 
Evident ly every structure invariant  is also a structure 
seminvariant. In  fact those structure seminvariants 
whose values are independent of the chosen functional 
form for the structure factor coincide with the struc- 
ture invariants. 

Although the crystal structure determines the values 
of the structure invariants, the magnitudes of the 



46 STRUCTURE INVARIANTS AND SEMINVARIAIqTS 

structure factors do not. In  fact,  if S is a n y  structure 
then  the enant iomorphous ~ ~rueture S',  obta ined by  
reflecting S through a point,  has the same set of s trut-  
tare  factor magni tudes  as S.* However, as will be 
seen, the sign of any  structure invar ian t  for S is op- 
posite to tha t  of the corresponding invar ian t  for S '  
(with the tr ivial  exception tha t  the value of a s tructure 
invar ian t  is ~ for both structures). In  other words the 
magni tudes  of the structure factors determine only 
the magni tudes  of the structure invariants .  I t  is there- 
fore desirable to introduce a new concept, t ha t  of the 
intensity invariant. The in tens i ty  invar iants  are those 
structure invar iants  whose values, as a consequence of 
the space-group symmetry, are either 0 or ~r. Hence any  
in tens i ty  invar ian t  not  only has a unique value in- 
dependent  of the choice of permissible origin but  also 
of the choice of s tructure S or S'. In  short, the  values 
of the in tens i ty  invar iants  depend only on the  mag- 
ni tudes of the structure factors. 

In  formulat ing the phase problem it  is not  only 
necessary to take into account the need to specify the 
origint  bu t  also to decide between the two enantio- 
morphous structures S and S'. In  order to dist inguish 
between the structures S and  S'  it  is sufficient to 
specify arbi t rar i ly  the sign of any  one structure in- 
var iant  the magni tude  of which is different from 0 
and ~r (eft chap. 6 of our Monograph). 

The phase problem m a y  be accurately described as 
the problem of determining the values of the structure 
invar iants  for ei ther of the two enant iomorphous  
structures S, S'  once a sufficiently large number  of 
structure-factor magni tudes  has been given (assuming 
as always tha t  the atomic structure factors are known). 
Alternat ively,  the  phase problem is the problem of 
determining the values of the structure seminvar ian ts  
for either of the two enant iomorphous structures S, S',  
for each fixed funct ional  form of structure factor, once 
a sufficiently large number  of structure-factor mag- 
ni tudes is known. The phases m a y  then  be obtained 
from the values of the structure seminvar ian ts  (or 
invariants)  by  fixing the origin. To show how this m a y  
be done by  sui tably  specifying the values of an ap- 
propriate set of phases is a major  a im of this  paper.  

3. L inear  d e p e n d e n c e  and  i n d e p e n d e n c e  

Firs t  the  concept of l inear dependence modulo 
to = (eo~, co 2 . . . .  , c%), where the o~i are a rb i t ra ry  in- 
tegers, is introduced since i~ permits  the s ta tement  of 
general conclusions in a convenient  and concise fashion. 
In  the case tha t  the wi are all zero this concept coin- 
cides with the ordinary one of l inear dependence. If  

* We assume in this paper  tha t  the  solution to the  phase 
problem is essentially unique,  i.e. t ha t  S and S '  are the  only 
s t ructures  having the  given set of s t ructure-factor  magni tudes .  

J~ We assume a fixed reference f rame except  for transla- 
tions, and the  problem of dist inguishing between permissible 
reference frames (when they  are distinct) is pos tponed  (Hypo- 
thesis B, § 7, footnote).  

the  eoi are all equal  to 2 this  concept reduces to t ha t  of 
l inear  dependence modulo 2 previously described in 
chap. 2 of our Monograph. We shall  need the  more 
general concept in which the eo~ are a rb i t ra ry  integers. 

We discuss vectors h = (h 1, h2, . . . ,  hv) all of whose 
p components  are integers. The vector h is said to be 
divisible by  to if the following two conditions are ful- 
f i l led:  

1. o~i = 0 implies t ha t  hi = O; 
2. w~ # 0 implies tha t  hi is divisible by  eel. 

In  short  h is divisible by  to if there exist  lo integers 
qi, i = 1, 2, . . . ,  p, such tha t  hi = qio~i, i = 1, 2 . . . .  , p. 
We then  write 

h = 0 (mod to) (3.1) 

and say tha t  h is congruent to zero modulo (9. In  
part icular ,  t ak ing  p = 1, the integer h is congruent 
to zero modulo 0 if, and only if, h = 0; h is congruent  
to zero modulo o~ # 0 if, and only if, h is divisible 
by  co. If  h is not  congruent to zero modulo to then  
h is said to be incongruent  to zero modulo to. Two 
vectors h 1 and h~ are congruent modulo to if the dif- 
ference h l - h  ~ is divisible by  to; and the  nota t ion  

h I -- h~ (rood to) (3.2) 
is used. 

A set of n vectors hi, j = 1, 2 , . . . ,  n, (n ~ 1), is 
said to be l inearly dependent  modulo to if there exists 
a set of n integers a i, j -- 1, 2, . . . ,  n, at  least one of 
which is incongruent  to zero modulo eoi for every 
i(i = 1, 2, . . . ,  p), such tha t  

.~  aih i -- 0 (mod to) .  (3"3) 
i=1 

Otherwise the set h i is said to be l inear ly  independent  
modulo to. 

The vector h is l inearly dependent  modulo to on, 
or l inear ly  independent  modulo to of, the  set 
h# j = 1, 2 . . . .  , n (n ~ 1), according as there exist  
or there do not  exist  n integers aj, j = 1, 2 , . . . , n ,  
some or all of which m a y  be zero, such tha t  

h --= ~ a ih  i (mod to).  (3.4) 
i=1 

In  part icular ,  any  vector h divisible by  to is l inear ly  
dependent  modulo to on any  set of vectors since every 
a! in (3.4) m a y  then  be taken  equal  to zero. 

In  ease wi = 0 for every i our concepts reduce to 
ordinary l inear dependence and independence,  and  the  
te rm 'modulo to' will usual ly  be omitted.  The following 
two theorems are well known:  

TH~ORE~ 3'1. If  n > p, the  set of n vectors 
h i, j = 1, 2 . . . .  , n, is l inear ly  dependent.  

T~EORE~ 3"2. If  n ~ p, the set of n vectors 
h i = (hil, hi2, . . . ,  h;-v), j = 1, 2 . . . .  , n, is l inear ly  de- 
pendent  if, and only if, every n × n  sub-de te rminant  
of the n × p ma t r ix  
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vanishes. 

( h~l h12 . . .  hip ) 
H = h21 h22 " ' "  h2p (3.5) 

4. Rational dependence and independence 

The vector h is ra t iona l ly  dependent  modulo eo on, 
or ra t iona l ly  independent  modulo eo of, the set 
h# j = 1, 2 . . . .  , n, (n ~ 1), according as there exist  
or there do not  exist  n ra t ional  numbers  ai, j =  1 , 2 , . . . ,  n, 
some or all  of which m a y  be zero, such tha t  

h -= ~ aih i (mod co). (4.1) 
i=1 

The following theorem is an  immedia te  consequence 
of the previous definitions. 

T~EOREM 4"1. I f  the vector h is l inear ly  dependent  
modulo eo on the  set hi, j = 1, 2, . . . ,  n, n ~ 1, then  
h is ra t iona l ly  dependent  modulo eo on the  set h i. 

The converse of Theorem 4.1 is not  true. However,  
we obta in  a par t ia l  converse of this  theorem by  means  
of the impor tan t  concept of the  pr imi t ive  set. 

5. Primit ive  sets 

Let  the  set M of n vectors h i = (h#, hi2 . . . .  , hip), 
j = 1, 2 . . . .  , n, be given. If  the  set of vectors h i is 
l inear ly  dependent  we define the  modulus  m of the  
set h i to be zero. If  the set h i is l inear ly  independent  
then,  by  Theorem 3"1, n < p, and  the modulus  m of 
the  set h i is defined to be the greatest  common divisor 
of all n x n  sub-de te rminants  of the  n x p  mat r ix  H,  
(3.5), not  all of whose n × n  sub-determinants  vanish  
(Theorem 3.2). We shall  call m also the modulus  of 
the ma t r ix  H. I f  m = 1, then  the set of n vectors h i 
is said to be primit ive.  In  case m = 0, whence the  
rank  of the ma t r ix  H is n '  < n, then  the  set M of n 
vectors hj will also be called pr imi t ive  provided tha t  
there exists a subset  M' of M, consisting of n' vectors, 
which consti tutes a pr imi t ive  l inear ly  independent  
basis for M, i.e. every vector of M is ra t iona l ly  
dependent  on the  set of n '  vectors M'. In  part icular ,  
if n = p, then  the l inear ly  independent  set h i is 
pr imi t ive  if, and only if, the  de te rminan t  of H is ± 1. 

The impor tance  of the  notion of pr imi t ive  sets is 
due to the following fundamen ta l  theorem, a par t ia l  
converse of Theorem 4.1 when every coi = 0. 

THEORE~ 5"1. If  the vector h = (hi, h9 . . . .  , hp) is 
ra t ional ly  dependent  on the  pr imit ive,  l inear ly  in- 
dependent  set hi, j = 1, 2, . . . ,  n, 1 < n < p, then  h 
is l inear ly  dependent  on the  set h r 

Proof: Since h is ra t ional ly  dependent  on the set hi, 
there exist  n ra t iona l  numbers  a # j  = 1, 2 . . . .  , n, 
such tha t  

h = ~ aih j . (5.1) 
1=1 

Write  a = (al, a 2 . . . .  , an). Then, using ma t r i x  nota- 
tion, (5-1) becomes 

h = a l l ,  (5.2) 

where H is given by  (3.5) and  the product  a H  means  
ma t r ix  mult ipl icat ion.  Since the l inear ly  independent  
set h i is pr imit ive,  the modulus  of H is uni ty .  Hence 
(Theorem H, H a u p t m a n ,  1954) there exists a p x n  
ma t r ix  Y with integer elements  such tha t  H Y is the  
n x n iden t i ty  matr ix .  Then (5.2) implies 

h Y  = aH:Y = a .  (5.3) 

Since the  elements  of h and  Y are integers, we con- 
clude tha t  the  elements a i of a = h Y are also integers. 
In  view of (5.1), h is l inear ly  dependent  on the set h# 

Next ,  let there be given a set of n vectors hj and  
let at  least one component  of eo = (o91, we, . . . ,  wp) 
be equal  to zero. Suppress those components  (if any) 
of each of the n vectors h i the  corresponding compo- 
nents  of which in eo are different  from zero. We obta in  

t t t the  derived set of n vectors h~ = (h#, hi2 . . . .  , hip,), 
j = 1, 2 . . . .  , n, where p '  ~ 1 is the n u m b e r  of those 
components  in eo which are equal  to zero. The given 
set hj is said to be pr imi t ive  modulo eo if the derived 
set h/  is pr imit ive.  Evident ly ,  if every co/= 0, 
i = 1 ,2  . . . .  , p ,  then  the  notion of pr imi t ive  set 
modulo eo reduces to tha t  of pr imi t ive  set. 

Let  the  set of n vectors hj, j = 1, 2 . . . .  , n ,  be 
l inear ly  independent ,  and  let n < p. I t  is well known 
tha t  there exists a vector hn+l such tha t  the set of 
n + l  vectors hj, j = 1 ,2  . . . .  , n + l ,  is also l inear ly  
independent .  We shall  make  impor tan t  use of the  
following extension of this  result. 

T ~ o ~ , M  5.2. There exists a pr imi t ive  l inear ly  in- 
dependent  set h, consisting of a single vector. Let  the  
l inear ly  independent  set of n vectors hi, j =  1, 2 . . . .  , n, 
where n < p, be pr imit ive.  Then there exists a vector 
hn+ 1 such tha t  the set of n + l  vectors hi, j = l ,  2 . . . .  , 
n +  1, is also pr imi t ive  and  l inear ly  independent .  

6. Equivalence 

In  general  the functions ~ and ~ which define the struc- 
ture factor 2' (equations (2.1)-(2.3)) for each space 
group depend upon the  choice of origin. Two origins 
will be called equivalent  if the funct ional  forms for 
F to which they  give rise are identical.  In  other words, 
two origins are equivalent  if t hey  are geometrical ly 
related in the same way to all the s y m m e t r y  elements.  

We retain as p r imary  origin the one selected in  
International Tables for X-ray Crystallography, vol. 1, 
1952. In  each space group only certain points, related 
in a par t icular ly  s imple way to the s y m m e t r y  elements,  
can be chosen as possible origins if full  advantage  of 
the  space-group s y m m e t r y  is to be taken.  For  centre- 
symmet r ic  space groups the  permissible origins were 
defined to be the eight  points  

el, e2, e3; si = 0 or ½, i = 1, 2, 3 ,  (6.1) 
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which, for primitive unit  cells, coincide with the 
centers of symmetry.  :For non-centrosymmetric space 
groups the permissible origins are defined to be those 
points which are equivalent to at least one of the eight 
points (6.1). Only in this way do we make maximum 
use of the space-group symmetry.  To allow other points 
as permissible origins would lead to fewer structure 
invariants, viz. those appropriate to space groups 
which are proper subgroups of the space group in 
question. 

The concept of equivalent origins leads to the notion 
of equivalence classes. The set of all permissible origins 
may  be grouped into classes, and any two origins in 
any  class are equivalent while no origin in one class 
is equivalent to any origin in a different class. 

As previously pointed out, the values of only the 
structure invariants are determined by the structure, 
while the values of the phases depend also on the choice 
of permissible origin. I t  will be seen later tha t  the 
origin may  be chosen by first selecting the functional 
form for the structure factor, i.e. an equivalence class, 
and then by specifying in a suitable manner the values 
of the phases of an appropriate set of structure factors. 

7. The three categories of non-centrosymmetr i c  
space groups 

Our discussion is restricted to primitive unit cells since 
we thereby avoid the unnecessary complexities result- 
ing from the choice of non-primitive unit cells. In  
International Tables for X-ray  Crystallography,vol.1, 
1952, the unit  cell is chosen to be primitive for 94 
of the 138 non-centrosymmetric space groups. How- 
ever, for the remaining 44 space groups, structure 
factors appropriate to the choice of a primitive unit 
cell are readily obtained. Once this is done our methods 
become applicable to these space groups also. Alter- 
natively, since the simple transformations from primi- 
tive unit  cells to the conventional non-primitive unit 
cells are well known, our results are readily interpreted 
in terms of the lat ter  choice of unit cell. In  the mono- 
clinic system we have chosen the second setting with 
b axis unique. 

The structure factor for the general non-centro- 
symmetric crystal having N atoms per unit cell may  
be written. 

~Y 

Fn -- ~ f i h  exp [2~i(hxj÷ky~+lzj)],  (7.1) 

where the atomic structure factor fib is a function 
of h, and the coordinates of the j t h  atom are x# yi, z i. 
If the origin is shifted to a different point having 
coordinates x 0, Y0, z0 with respect to the first origin, 
then x i, yj, zi in (7-1) are replaced by x i - x  o, Yj-Yo,  
z j - z  o. I t  is readily verified tha t  Fh in (7.1) is then 
replaced by  

F~ = .Fh exp [-2zd(hxo÷lCyo÷lzo)],  (7.2) 

i.e. $'h is multiplied by exp [-2zd(hxo+kyo+lzo)].  In  

short, the magnitude of Fh remains unchanged while 
the phase Ch of $'h is replaced by 

! 

~h = ~h-- 2~(hx0 + kYo ÷lzo). 

As with centrosymmetric space groups, the non- 
centrosymmetric space groups fall into three different 
categories depending upon the number of equivalence 
classes. Category 1 consists of those space groups having 
one equivalence class, Category 2 of those space groups 
having two equivalence classes, and Category 3 of 
those space groups having four equivalence classes. 
As shown in Table 1, each category is further sub- 
divided into several types depending upon the nature 
of the equivalence classes. Each type is clearly charac- 
terized by row 6 of Table 1, the equivalence classes 
being defined by the boxes with solid lines. 

We give next several definitions which are found 
to be convenient. 

DEFn~ITION 7"1. Two numbers a and b are said to 
be equivalent if the difference a - b  is an integer; the 
notation a -  b is used. In  particular a is an integer 
if, and only if, a -  0. 

DE~n~ITIO~ 7.2. To each type described in Table 1 
we associate a vector toi called the invariant modulus 
and a vector ~s called the seminvariant modulus and 
defined by rows 7 and 8 respectively of Table 1. For 
Category 1 the invariant modulus coincides with the 
seminvariant modulus and will be referred to simply 
as the modulus to. 

DEFI~rrION 7"3. For each of the types described in 
Table 1, the vectors h i and h s, associated invariantly 
and seminvariantly respectively with the phase ~h, 
are defined by rows 9 and 10 of Table 1. For Category 1, 
h~=  h s =  h. 

DEFINITION 7"4. For each of the types described 
in Table 1, a set of phases is said to be linearly de- 
pendent or independent according as the set of in- 
variant ly associated vectors is linearly dependent or 
independent modulo eoi, where coi is the invariant  
modulus of the type. The phase ~h is linearly (ration- 
ally) dependent on, or linearly (rationally) independent 
of, the set of phases Whj according as the vector in- 
variant ly associated with ~h is linearly (rationally) 
dependent modulo to~ on, or linearly (rationally) in- 
dependent modulo ~oi of, the set of vectors invariant ly 
associated with the set ~hj. 

D~,FIm~ON 7"5. For each of the types described 
in Table 1, a set of phases Wh~ is said to be linearly 
semi-dependent or semi-independent according as the 
set of seminvariantly associated vectors is linearly 
dependent or independent modulo to~, where to~ is the 
seminvariant modulus of the type. The phase Wh is 
linearly (rationally) semi-dependent on, or linearly 
(rationally) semi-independent of, the set of phases Whj 
according as the vector seminvariantly associated with 
~h is linearly (rationally) dependent modulo eo~ on, 
or linearly (rationally) independent modulo eo~ of, the 
set of vectors seminvariantly associated with the 
set ~0h i. 
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DEFINITION 7.6. For each of the types  described in  
Table 1, a set of phases ?hj is said to be pr imi t ive  if 
the  set of invar ian t ly  associated vectors is pr imi t ive  
modulo toi, where eai is the invar ian t  modulus  of the 
type.  

D E ~ r r l o ~  7-7. For  each of the types  described in  
Table  1, a set of phases 9hj is said to be semi-pr imit ive 
if the set of seminvar ian t ly  associated vectors is prim- 
i t ive modulo o , ,  where to, is the seminvar ian t  modulus  
of the type. 

Table 1 shows tha t  the concepts of invar iance and  
seminvar iance coincide for Category 1. 

I t  is now possible to state the following five funda- 
menta l  theorems which summarize  brief ly some of the 
ma in  results of this  paper :  

MAr~ THEO~V,M 7"1. The crystal  s tructure deter- 
mines the values of all the  structure invariants .  :For 
each fixed funct ional  form for the structure factor, 
the crystal  s tructure determines the values of all the 
s tructure seminvariants .  

THEOREM 7"2. The value of any  structure 
invar ian t  for the structure S is the negat ive of the 
corresponding structure invar ian t  for the  enantio- 
morphous structure S' obtained by  reflecting S through 
a point  (with the  t r iv ia l  exception tha t  a s tructure 
invar ian t  m a y  have the value x for both structures). 

~AIN THEOREM 7"3. A sufficient  number  of s tructure 
factor magni tudes  determines the  magni tudes  of all 
the  structure invar ian ts  and  the values of all the  
in tens i ty  invariants .  The sign of any  structure in- 
var iant ,  the  value of which is different from 0 and ~r, 
m a y  be specified arbi t rar i ly .  Once this is done (thus 
dist inguishing between the two enant iomorphous struc- 
tures S and S'  permi t ted  by  the structure factor mag- 
nitudes) then  the values (not merely  the magnitudes)  
of all remaining  structure invar ian ts  are un ique ly  
determined by  the structure-factor  magnitudes.  In  
addition, if a funct ional  form for the  structure factor 
is chosen, then  the values of all  the  structure semin- 
var iants  are also un ique ly  de~ermined.* 

MAIN T H E O R E M  7.4. For  each type  the structure 
invar iants  are the l inear combinat ions 

Ah{ph, (7"3) 
h 

where the A h are integers sat isfying 

Ahh~ ------ 0 (mod eo~), (7"4) 
h 

h~ is the vector i nva r i an t ly  associated with the  phase 
~h, t0i is the  invar ian t  modulus  of the type,  and the  

symbol  ~ in (7-3) means  (as always) tha t  the sum in 

(7"3) is to be reduced modulo 2~ and  - ~  < ..~ < ~:. 
h 

* Main theorems 7.2 and 7"3 are valid also for the structure 
seminvariants provided that the functional form for the 
structure factor is fixed; hence provided that the space group 
does not belong to one of the 11 enantiomorphous pairs. 
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1W_an¢ THEOREM 7"5. For  each type  the  s t ructure  
seminvar iants  are the l inear combinat ions 

~ '  A h ~ h ,  (7"5) 
h 

where the  Ah are integers sat isfying 

A h h  s - 0 (mod toe), (7-6) 
h 

hs is the  vector seminvar ian t ly  associated wi th  the  
phase qh, and to s is the seminvar ian t  modulus  of the  
type.  

The remainder  of this  paper  is devoted to spelling 
out in detail  simple methods  for selecting the  origin 
for each of the th i r teen types of non-centrosymmetr ic  
space groups. For  each type  in Categories 2 and 3 we 
give two procedures, first  by  means  of the structure 
invar ian ts  and  secondly by  means  of the  structure 
seminvariants .  Although, for some of the  types,  our 
methods  are capable of yielding somewhat  more general 
results t han  those we describe, we give, for the sake 
of brevi ty  and  clarity,  only the simplest  procedures. 

All the remaining theorems of this  paper  are val id 
under  either one of the following hypotheses:  

Hypothes is  A:  The crystal  s tructure is given;  or 
Hypothes is  B:  A sufficiently large number  of struc- 

ture-factor magni tudes  is given (so that ,  by  Theorem 
7.3, the magni tudes  of all the  structure invar ian ts  are 
determined) and the sign of any  one structure in- 
var iant ,  the  magni tude  of which is different from 0 
and ~r, has  been arbi t rar i ly  specified (in accordance 
wi th  Theorem 7.3).* 

The role p layed by  the pr imi t ive  sets in leading to 
a unique choice of origin is especially noteworthy and  
should be emphasized at  the start .  If  the set of phases 
whose values are specified is not  pr imit ive,  then  the 
values of certain of the remaining phases will not  be 
uniquely  determined.  

8. The thirteen type~ of n o n - c e n t r o s y m m e t r i c  
space  groups  

8"01. Type 1P000 
THEOREM 8.01"1. No single phase (except the  t r iv ia l  

~000o) is a s tructure invar iant .  
Proof: Theorem 7.4. 
TH~.O~EM 8"01"2. The value of any  phase Thl, which 

is linearly independent, may be specified arbitrarily. 
Once this is done then  the  value of a n y  phase ~h 

* In this way we distinguish the two enantiomorphous 
structures S, S' (when they are distinct), or the permissible 
reference frames (when they are distinct), or both. In the 
case that the magnitude of no structure invariant is different 
from 0 or ~ then their values are independent of the choice 
of enantiomorphous structure and of permissible reference 
frame. Thus the need of specifying the sign of a structure 
invariant does not arise in this case. The same remarks apply 
to the structure seminvariants provided that the functional 
form for the structure factor has been fixed. 
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which is linearly dependent on 7%1 is uniquely deter- 
mined. In view of Theorem 5-1, any phase ~n which 
is rationally dependent on ~nl is also linearly dependent 
on ~nl, whence its value is uniquely determiued, pro- 
vided that  ¢al, is primitive, i.e. provided that  the 
greatest common divisor of h~, ]C~, and l~ is unity. 

Proof: This is a consequence of Theorems 7.2 and 
7"4 since (7.2) implies 

1 
hixo+]clYo+l~zo = ~ (~hi--(Ph~) , (8"1) 

an equation which has solutions x 0, Y0, z0 (of necessity 
equivalent to 0, 0, 0) for arbitrary choice of value for 
T~, in view of the hypothesis that  ~hl is linearly 
i4~lependent. 

T~EORE~ 8"01"3. The values of any two phases 
~ ,  ~a2, constituting a linearly independent set, may 
be specified arbitrarily. Once this is done then the 
value of any phase ~h which is linearly dependent 
on the pair ~hl, ~a2 is uniquely determined. In view 
of Theorem 5.1, any phase ~h which is rationally 
dependent on the pair ~h~, ~h~ is also linearly depen- 
dent on this pair, whence its value is uniquely deter- 
mined, provided that  the pair ~hl, Ch~ is primitive, 
i.e. provided that  the greatest common divisor of 

hi ]ci hi li ]cl ll 

is unity. 
TH~OREH 8"01"4. The values of any three phases 

~ ,  ~h2, ~3,  constituting a linearly independent set, 
may be specified arbitrarily. Once this is done then 
the value of any phase ~h which is linearly dependent 
on the triple ~al, ~ ,  ~aa is uniquely determined. In  
view of Theorem 5.1, any phase ~ ,  of necessity ra- 
tionally dependent on the triple ~hl, ~h~, ~a ,  is alSO 
linearly dependent on this triple, whence its value is 
uniquely determined, provided that  the triple 
~al, ~,,~, ~h3 is primitive, i.e. provided that  

hi ]c~ ~ 
h~ ]c~ l~ =+I. 
ha ]ca 13 

8.02. Type 1P222 
THEOREH 8"02"1. A single phase ~h is a structure 

invariant, i.e. its value is uniquely determined, if, 
and only if, h, ]C and 1 are all even. 

Proof: Theorem 7.4. 
THEO~E~ 8-02"2. Any phase ~al, which is linearly 

independent, has just two possible values, and these 
differ from each other by g. Either one of these two 
values may be chosen. Once this is done then the 
value of any phase ~a which is linearly dependent on 
~hl is uniquely determined. 

Proof: Equation (7.2) implies (8.1) where now the 
permissible origins x0, Y0, z0 coincide with the eight 
points (6-1). Hence any two different values for ~hl 
differ by g, and either one of these two possible values 

may be realized by suitably choosing the origin since 
Whl is linearly independent. The theorem then follows 
from Theorems 7.2 and 7.4. 

TH~OR]~H 8"02"3. Let q%1 and ~h~ be any two phases 
constituting a linearly independent set. In accordance 
with Theorem 8.02.2 either one of the two possible 
values of ¢hl may be chosen, and either one of the 
two possible values of Wa~ may be chosen. Once this 
is done then the value of any phase ~ which is linearly 
dependent on the pair ~hl, Wh2 is uniquely determined. 

THEOREM 8"02"4. Let ~0hl, ~0n2, and Tn3 be any three 
phases constituting a linearly independent set. In  
accordance with Theorem 8.02.2 either one of the two 
possible values of q~h~ may be chosen, either one of the 
two possible values of ~ may be chosen, and either 
one of the two possible values of ~h3 may be chosen. 
Once this is done then the value of any phase ~h, of 
necessity linearly dependent on the triple ~n~, ~n~, ~3,  
is uniquely determined. 

8.03. Type 1P202 
T~EOREM 8"03"1. A single phase ~h is a structure 

invariant, i.e. its value is uniquely determined, if, and 
only if, h and 1 are both even and k = 0. 

Proof: Theorem 7.4. 
THEOREH 8"03"2. Any phase ~hloll which is linearly 

independent (i.e. h 1 and 11 are not both even) has just 
two possible values, and these differ from each other 
by ~. Either one of these two values may be chosen. 
Once this is done, then the value of any phase ~h 
which is linearly dependent on ~hl is uniquely deter- 
mined. 

THEOREM 8"03"3. Let ha and 13 both be even. Then 
the value of any phase ~ha which is linearly indepen- 
dent (i.e. Ica ~: 0) may be specified arbitrarily. Once 
this is done then the value of any phase ~h which is 
linearly dependent on ~h3 (i.e. h and l are both even 
and k is divisible by ka) is uniquely determined. In 
view of Theorem 5.1, any phase ~h which is rationally 
dependent on ~h3 is also linearly dependent on ~3,  
whence its value is uniquely determined, provided that  
~h3 is primitive, i.e. provided that  ]c a = ~:1. 

THEOREH 8"03"4. Let ~hl01~ and ~h20z2 be any two 
phases constituting a linearly independent set.  In 
accordance with Theorem 8.03.2 either one of the two 
possible values of ~h~ may be chosen, and either one 
of the two possible values of Ch~. may be chosen. Once 
this is done then the value of any phase ~h which is 
linearly dependent on the pair ~h~, Wh2 is uniquely 
determined. 

T~EOREM 8"03-5. Let k 1 = 0 and ha and 13 be both 
even. Let Whl and Wh3 be any two phases constituting 
a linearly independent set (i.e. h 1 and 11 are not both 
even, and lca ~= 0). In accordance with Theorems 8.03.2 
and 8.03.3 either one of the two possible values of Whl 
may be chosen while the value of Wh3 may be specified 
arbitrarily. Once this is done then the value of any 
phase ~h which is linearly dependent on the pair 

4* 
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~h 1, ~Ph.~ is uniquely determined. In  view of Theorem 
5.1, any phase ~0 h which is rationally dependent on 
the pair qh~, qh.~ is also linearly dependent on this pair, 
whence its value is uniquely determined, provided 
tha t  the pair ?h~, qua is primitive, i.e. provided tha t  
k~ = +1. 

T~v.oR~m 8.03.6. Let kx = k~ = 0 and h~ and 1 z be 
both even. Let qhl, ~9h~ " and ~0ua be any three phases 
constituting a linearly independent set. In  accordance 
with Theorems 8.03.3 and 8.03-4 either one of the 
two possible values of ~0ul may be chosen and either 
one of the two possible values of ?u~ may be chosen, 
while the value of ~u~ may  be specified arbitrarily. 
Once this is done then the value of any phase ~0h 
which is linearly dependent on the set qh~, qh~, ~0h~ 
(i.e. k is a multiple of k~) is uniquely determined. In  
view of Theorem 5.1 any phase ~0h, Of necessity ration- 
ally dependent on the triple ~0h~, qh~, ~0ha, is also 
linearly dependent on this triple, whence its value is 
uniquely determined, provided tha t  the triple 
qh~, ~v~, ~h~ is primitive, i.e. provided tha t  k a = ± l .  

8.04. Type 1P020 
T~EO~E~ 8"04"1. A single phase qh is a structure 

invariant if, and only if, h = 1 = 0 and k is even. 
Proof: Theorem 7-4. 
T~EORE~ 8"04"2. Any phase ~0~10, which is linearly 

independent (i.e. k 1 is odd), has just  two possible 
values, and these differ from each other by ~. Either 
one of these two values may  be chosen. Once this is 
done then the value of any phase qn which is linearly 
dependent on qnl (i.e. h = l = 0  and k is odd) is 
uniquely determined. 

T~EORE~ 8"04"3. Let k~ be even. Then the value of 
any phase ~0nz which is linearly independent (i.e. 
h~ and 12 are not both zero) may  be specified ar- 
bitrarily. Once this is done then the value of any phase 
~0n which is linearly dependent on ~n~ is uniquely 
determined. In  view of Theorem 5.1, any phase ~n 
which is rationally dependent on ~0h~ is also linearly 
dependent on ~0n~, whence its value is uniquely deter- 
rained, provided tha t  ~0n~ is primitive, i.e. provided 
tha t  hz and l~ are relatively prime. 

T~EO~S~ 8"04"4. Let k~ and k a be even. Then the 
values of any two phases ~0n~, ~na, constituting a 
linearly independent set, may be specified arbitrarily. 
Once this is done then the value of any phase ~a 
which is linearly dependent on the pair ~0n~, ~0nz is 
uniquely determined. In  view of Theorem 5.1, any 
phase ~0n which is rationally dependent on the pair 
~0n~, ~0~a is also linearly dependent on this pair, whence 
its value is uniquely determined, provided tha t  the 
pair is primitive, i.e. provided tha t  

± 1 .  
ha l~ I 

T ~ E O ~  8.04.5. Let h 1 = 1 x = 0 and k~ be even. 
Let ~0hl and qh~ be any two phases which constitute 
a linearly independent set (i.e. k~ is odd and h~ and l~ 

are not both zero). In  accordance with Theorems 
8.04.2 and 8.04.3, either one of the two possible values 
of ~hl may be chosen while the value of ~h, may  be 
specified arbitrarily. Once this is done, then the value 
of any phase ~h which is linearly dependent on the pair 
qal, qh~ is uniquely determined. In view of Theorem 
5.1, any phase qn which is rationally dependent on 
the pair ~hl, ~n~ is also linearly dependent on this pair, 
whence its value is uniquely determined, provided tha t  
the pair qh~, ~n~ is primitive, i.e. provided tha t  h~ 
and l~ are relatively prime. 

T H E O ~  8.04.6. Let hi = l~ = 0 and k~ and ks 
both be even. Let the three phases qh~, ~0n~, qn3 con- 
sti tute a linearly independent set, i.e. k 1 is odd and 

h2 l~ I ha la # 0 .  

In  accordance with Theorems 8.04.4 and 8.04.6, either 
one of the two possible values of 9hx may  be chosen, 
while the values of 9h2 and 9an may be specified ar- 
bitrarily. Once this is done then the value of any phase 
9h which is linearly dependent on the set 9h~, 9h~, 9ha 
is uniquely determined. In  view of Theorem 5.1 any 
phase ~0n, of necessity rationally dependent on the 
triple 9h~, 9h~, 9h~, is also linearly dependent on this 
triple, whence its value is uniquely determined, pro- 
vided tha t  the triple ~%1, ~h~, ~0~a is primitive, i.e. 
provided tha t  

h~ l~ 
I h~/~ [ = + 1 "  

8.05. Type 1P220 

Evidently Theorems 8.03.1-8.03.6 for Type 1P202 
are valid also for Type 1P220, except for the obvious 
changes involving the interchange of the second and 
third indices. 

8.06. Type 2P20 
The permissible origins coincide with those for Type 

1P220. Hence Theorems 8-03.1-8.03.6 for Type 1/>202 
are valid also for Type 2P20, except for the changes 
involving the interchange of the second and third 
indices. 

TH~.OREM 8"06"1. A single phase ~h is a structure 
seminvariant, i.e. for a fixed functional form for the 
structure factor its value is uniquely determined, if 
and only if h+k is even and / = 0. 

Proof: Theorem 7.5. 
THEOREM 8"06"2. Let the functionzl form for the 

structure factor be fixed. Let /1  -~ 0. ~ hen any phase 
qhl which is linearly semi-independent (i.e. hl+k ~ is 
odd) has just  two possible values, and these differ 
from each other by ~. Either one of these two values 
may be chosen. Once this is done then the value of any  
phase qh which is linearly semi-dependent on ~hl 
(i.e. 1 = 0) is uniquely determined. 

TEEOR~M 8"06"3. Let the functional form for the 
structure factor be fixed. Let h~+k2 be even. Then the 
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value of any phase ~h~ which is linearly semi-inde- 
pendent (i.e. l~ ~ 0) may  be specified arbitrarily. Once 
this is done then the value of any phase ~n which is 
linearly semi-dependent on ~ (i.e. h + k  is even and 
1 is divisible by 4) is uniquely determined. In  view of 
Theorem 5.1, any phase ~h which is rationally semi- 
dependent on ~n2 is also linearly semi-dependent on 
~2 ,  whence its value is uniquely determined, provided 
tha t  ~ 2  is semi-primitive, i.e. provided tha t  l~ = ±1. 

THEOREM 8"06'4. Let the functional form for the 
structure factor be fixed. Let l ~ - - 0  and h~÷/c~ be 
even. Let ~0n~ and ~a~ be any two phases which con- 
st i tute a linearly semi-independent set (i.e. hl+/¢ 1 is 
odd and l~ ~: 0). In accordance with Theorems 8.06.2 
and 8.06.3, either one of the two possible values of ~h~ 
may  be chosen while the value of ~0n2 may  be specified 
arbitrarily. Once this is done then the value of any 
phase ~n which is linearly semi-dependent on the pair 
~n~, ~n~ is uniquely determined. In  view of Theorem 
5.1, any phase ~ ,  of necessity rationally semi- 
dependent on the pair ~0n~, q%~o is also linearly semi- 
dependent on this pair, whence its value is uniquely 
determined, provided tha t  the pair ~hl, ~0~2 is semi- 
primitive, i.e. provided tha t  12 - ±1. 

8.07. Type 2P22 
The permissible origins coincide with those for 

Type 1P222. Hence Theorems 8.02.1-8.02.4 for Type 
1P222 are valid also for Type 2P22. 

TH~OR~ 8"07"1. A single phase ~n is a structure 
seminvariant if, and only if, h÷k and 1 are both even. 

Proof: Theorem 7.5. 
TH~,ORE~ 8"07"2. Let the functional form for the 

structure factor be fixed. Any phase ~n~ which is 
linearly semi-independent (i.e. h~+k 1 and l~ are not 
both even) has just  two possible values; these differ 
from each other by g. Either  one of these two values 
may  be chosen. Once this is done then the value of 
any phase ~n which is linearly semi-dependent on ~ 
is uniquely determined. 

THEORE~ 8"07"3. Let the functional form for the 
structure factor be fixed. Let ~0~ and ~n2 be any two 
phases which constitute a linearly semi-independent 
pair. In  accordance with Theorem 8.07.2, either one 
of the two possible values of ~nl may  be chosen, and 
either one of the two possible values of ~ may  be 
chosen. Once this is done then the value of any phase 
~h, of necessity linearly semi-dependent on the pair 
~0nl, ~0~, is uniquely determined. 

8.08. Type 3P30 
THEORE]~I 8.08.1. A single phase ~h is a structure 

invariant  if, and only if, h -- k - 0 or 2 or 4 (rood 6) 
and 1 = 0. 

Proof: Theorem 7.4. 
TH~Ol~,~ 8.08.2. Let l~ = 0 and ~h~ be any phase 

which is linearly independent. Then ~ has just  six 
possible values, and these form an arithmetic pro- 

gression with common difference equal to ~/3. Any 
one of these six values for ~hl may  be chosen. Once 
this is done then the value of any phase ~0h which is 
linearly dependent on ~hl is uniquely determined. 

THEOREM 8"08"3. Let 11 = 12 = 0 and let ~ 1  and 
~h~ be any two phases each of which is linearly in- 
dependent and neither of which is linearly dependent 
on the other. (We note however tha t  the pair ~hl, ~%2 
is of necessity linearly dependent.) In  accordance 
with Theorem 8.08.2, the value of ~0hl may be arbi- 
t rar i ly chosen from a certain set of six numbers in 
arithmetic progression with common difference z~/3. 
Once this is done then there remain only two possible 
values for ~2 ,  and these differ from each other by g. 
Either one of these two possible values for ~0h2 may 
be chosen. Once this is done then the value of any 
phase ~0h which is linearly dependent on the pair 
~hl, ~h2 (i.e. 1 --- 0) is uniquely determined. 

THV.O~.M 8.08.4. Let h3+2/c 3 - 2h3+k3 --- 0 (mod 6) 
and let ~0h3 be any phase which is linearly independent 
(i.e. 13 ~= 0). Then the value of ~,.~ may be arbitrari ly 
specified. Once this is done then the value of any 
phase ~h which is linearly dependent on ~0h3 is uniquely 
determined. In view of Theorem 5.1, any phase ~h 
which is rationally dependent on ~h3 is also linearly 
dependent on ~h3, whence its value is uniquely deter- 
mined, provided tha t  ~h3 is primitive, i.e. provided 
tha t  13 = +1. 

TH~ORE~ 8"08"5. Let ~h~ and ~h3 be as in Theorems 
8.08.2 and 8.08.4. Then the conclusions of Theorems 
8.08.2 and 8-08.4 are valid. In  addition, once the values 
of ~hl and ~h3 have been specified in accordance with 
Theorems 8.08-2 and 8.08.4 then the value of any 
phase ~0h which is linearly dependent on the pair 
~ ,  ~ a  is uniquely determined. 

TH~OR~ 8-08-6. Let the phases ~h~, ~0~2, and ~%3 
be as in Theorems 8.08.3 and 8.08.4. Then the con- 
clusions of Theorems 8.08.3 and 8.08.4 hold. In  addi- 
tion, once the values of ~hl, ~ and ~0h3 have been 
specified in accordance with Theorems 8.08.3 and 
8.08.4, then the value of any phase ~ which is linearly 
dependent on the triple ~hl, ~ ,  ~ 3  is uniquely de- 
termined. Any phase ~0~, of necessity rationally de- 
pendent on the triple ~hl, ~°~2, ~a3 is also linearly 
dependent on this triple, whence its value is uniquely 
determined, provided tha t  the triple is primitive, i.e. 
provided tha t  13 -- ±1. 

THv.O~V,~ 8.08.7. A single phase ~h is a structure 
seminvariant if, and only if, h --- k (mod 3) and 1 -- 0. 

Proof: Theorem 7.5. 
THEORE~ 8"08"8. Let the functional form for the 

structure factor be fixed. Let l~ = 0. Any phase ~0~ 1 
which is linearly semi-independent (i.e. hi •/c~ (rood 3)) 
has just  three possible values, and these form an 
arithmetic progression with common difference equal 
to 2~/3. Any one of these three values for ~h~ may  be 
chosen. Once this is done then the value of any phase 
~0~ which is linearly semi-dependent on ~0~ (i.e. l=O) 
is uniquely determined. 
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THEO~E~ 8"08"9. Let the functional form for the 
structure factor be fixed. Let h 2 -- k~ (mod 3) and let 
Wn~ be any phase which is linearly semi-independent 
(i.e. l~ ~= 0). Then the value of Wn~ may  be specified 
arbitrarily. Once this is done then the value of any 
phase Wh which is linearly semi-dependent on ~n~ is 
uniquely determined. In  view of Theorem 5.1, any 
phase ~h which is rationally semi-dependent on ~n~ 
is also linearly semi-dependent on ~n~, whence its 
value is uniquely determined, provided tha t  Wn~ is 
semi-primitive, i.e. provided tha t  12 = ±1. 

TH~.O~E~ 8"08"10. Let the functional form for the 
structure factor be fixed. Let the phases ~ht, ~h~ be 
as in Theorems 8.08-7 and 8.08-8 whence they  con- 
sti tute a linearly semi-independent pair. In  accordance 
with Theorems 8-08.7 and 8.08.8, the value of ~at 
may be chosen arbitrari ly from a certain set of three 
numbers in arithmetic progression while the value of 
~ha may be specified arbitrarily. Once this is done then 
the value of any phase ~h which is linearly semi- 
dependent on the pair ~hl, ~n~ is uniquely determined. 
In  view of Theorem 5.1, any phase ~n, of necessity 
rationally semi-dependent on the pair ~ t ,  ~n~ is also 
linearly semi-dependent on this pair, whence its value is 
uniquely determined, provided tha t  the pair ~hi, ~ 
is semi-primitive, i.e. provided tha t  12 = ±1. 

8.09. Type 3P32 

T H ~ O ~  8.09.1. A single phase ~h is a structure 
invariant  if, and only if, h----k--0 or 2 or 4 (rood 6) 
and l - 0 (mod 2). 

Proof: Theorem 7.4. 
T~EORE~ 8"09"2. Let It -- 0 (mod 2) and ~ht be any 

phase which is linearly independent. Then ~ht has 
just  six possible values, and these form an arithmetic 
progression with common difference equal to z/3. 
Any one of these six values for ~nl may  be chosen. 
Once this is done then the value of any phase ~n 
which is linearly dependent on ~nl is uniquely deter- 
mined. 

TH~.OR~ 8"09"3. Let l~ --= 12 -- 0 (mod 2) and let 
~nt and ~n2 be any two phases each of which is 
linearly independent and neither of which is linearly 
dependent on the other. (As in Theorem 8.08.3 the 
pair 7~ ,  ~n2 is of necessity linearly dependent.) In  
accordance with Theorem 8.09-2, the value of ~ht 
may  be arbitrari ly chosen from a certain set of six 
numbers in ari thmetic progression with common dif- 
ference ~/3. Once this is done then there remain only 
two possible values for ~n~, and these differ from each 
other by ~. Either  one of these two possible values 
for ~n2 may  be chosen. Once this is done then the value 
of any phase ~h which is linearly dependent on the pair 
~al, ~h~ (i.e. l is even) is uniquely determined. 

T H E O ~  8"09"4. Let h3+2k 3 - 2h~+k 3 - 0 (rood 6) 
and let ~n3 be any phase which is linearly independent 
(i.e. l~ is odd). Then ~h3 has just two possible values, 
and these differ from each other by  ~. Either one of 
these two values for 7~3 may  be chosen. Once this is 

done then the value of any phase ~n which is linearly 
dependent on ~h3 is uniquely determined. 

T~EOREM 8"09"5. Let ~al and ~n~ be as in Theorems 
8.09.2 and 8.09-4. Then the conclusions of Theorems 
8.09.2 and 8.09.4 are valid. In addition, once the values 
of 7~t and ~n3 have been specified in accordance with 
Theorems 8.09.2 and 8-09.4 then the value of any phase 
~n which is linearly dependent on the pair ~nl, ~a3 
is uniquely determined. 

THEOREM 8"09"6. Let the phases ~n~, ~k2, and q~3 
be as in Theorems 8-09.3 and 8.09.4. Then the con- 
elusions of Theorems 8.09.3 and 8.09.4 hold. In addi- 
tion, once the values of ~nl, ~n2, and ~n3 have been 
specified in accordance with Theorems 8.09.3 and 
8.09-4, then the value of any phase 7~, of necessity 
linearly dependent on the triple ~nl, ~h~., ~h3, is 
uniquely determined. 

THEOREM 8"09-7. A single phase ~n is a structure 
seminvariant if, and only if, h --/¢ (mod 3) and 1 -- 0 
(mod 2). 

Proof: Theorem 7.5. 
TH~.OREM 8"09"8. Let the functional form f o r  the 

structure factor be fixed. Let 11 be even. Any phase 
~hl which is linearly semi-independent (i.e. hi ~ kl 
(mod 3)) has just  three possible values, and these form 
an arithmetic progression with common difference 
equal to 2z/3. Any one of these three values for ~ 1  
may  be chosen. Once this is done, then the value of 
any phase ~h which is linearly semi-dependent on ~hl 
(i.e. 1 is even) is uniquely determined. 

THEOREM 8"09"9. Let the functional form for the 
structure factor be fixed. Let h 2 - k 2 (mod 3) and let 
q ~  be any phase which is linearly semi-independent 
(i.e. 12 is odd). Then ~h2 has just  two possible values, 
and these differ from each other by ~. Either one of 
these two values for ~h~ may  be chosen. Once this is 
done, then the value of any phase which is linearly 
semi-dependent on ~h~ is uniquely determined. 

TH~.OR~,M 8"09"10. Let the functional form for the 
structure factor be fixed. Let the phases ~hl, ~h2 be 
as in Theorems 8.09.8 and 8.09-9 whence they  con- 
sti tute a linearly semi-independent pair. In  accordance 
with Theorems 8.09.8 and 8.09.9, the value of q ~  may  
be chosen arbitrarily from a certain set of three 
numbers in arithmetic progression while the value of 
~h2 may be chosen arbitrarily from a certain set of two 
numbers. Once this is done, then the value of any phase 
~h, of necessity linearly semi-dependent on the pair 
~hl, ~0h2, is uniquely determined. 

8.10. Type 3P10 

For Type 3P~0 the permissible origins coincide with 
those for Type 1P220. Hence Theorems 8.03.1-8.03-6 
for Type 1P202 are valid also for Type 3P10 , except 
for the changes involving the interchange of the second 
and third indices. 

THEORV.M 8"10-1. A single phase ~h is a structure 
seminvarian't if ,  and only if, 1 = 0. 

THEOR~.~ 8"10"2. Let the functional form for the 
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structure factor be fixed. The value of any phase qh~ 
which is linearly semi-independent (i.e. l~ # 0) may 
be specified arbitrarily. Once this is done, then the 
value of any phase qh which is linearly semi-dependent 
on qh~ is uniquely determined. In view of Theorem 5.1, 
any phase qh, of necessity rationally semi-dependent 
on qhl, is also linearly semi-dependent on qhl, whence 
its value is uniquely determined, provided that  the 
phase q%l is semi-primitive, i.e. provided t ha t /~=±1 .  

8.11. Type  3P~2 

For Type 3P12 the permissible origins coincide with 
those for Type 1P222. Hence Theorems 8.02.1-8.02.4 
for Type 1P222 are valid also for Type 3P~2. 

T~EORE~ 8"11-1. A single phase q% is a structure 
seminvariant if, and only if, l is even. 

T~.oR~,~ 8.11.2. Let the functional form for the 
structure factor be fixed. Any phase ~h~ which is 
linearly semi-independent (i.e. l~ is odd) has just two 
possible values, and these differ from each other by g. 
Either one of these two values for ~hl may be chosen. 
Once this is done, then the value of any phase ~h, of 
necessity linearly semi-dependent on ~hl, is uniquely 
determined. 

8-12. Type 3P~0 

THEOR~ 8"12"1. A single phase ~ is a structure 
invariant if, and only if, h = k = l ~ 0 (mod 2) and 
h + k + l  = O. 

Proof: Theorem 7.4. 
T~EORE~ 8"12.2. Let h~+k~+l 1 = O, and let ~ be 

any phase which is linearly independent. Then ~h~ 
has just two possible values, and these differ from each 
other by ~. Either one of these two values for ~ may 
be chosen. Once this is done, then the value of any 
phase ~h which is linearly dependent on ~h~ is uniquely 
determined. 

T~EOR~.~ 8"12"3. Let h~+k~+l~ = h2+k2+ 4 = 0 
and let ~0hl and ~h2 be any two phases which con- 
stitute a linearly independent pair. In accordance with 
Theorem 8.12.2 either one of the two possible values 
for ~hl may be chosen, and either one of the two 
possible values for ~%~ may be chosen. Once this is 
done, then the value of any phase which is linearly 
dependent on the pair ~0h~, ~h, is uniquely determined. 

T~ORE~ 8.12.4. Let ha+k3+l 3 be odd, whence the 
phase ~0h3 is linearly independent. Then the value of 
~0h3 may be specified arbitrarily. Once this is done, 
then the value of any phase ~0h which is linearly 
dependent on ~h3 is uniquely determined. In view of 
Theorem 5-1, any phase ~0h which is rationally de- 
pendent on ~0h3 is also linearly dependent on ~h3, 
whence its value is uniquely determined, provided that  
~0h3 is primitive, i.e. provided that  ha+k3+l 3 = ±1.  

T~.ORE~ 8"12"5. Let ~h~ and ~h3 be as in Theorems 
8.12.2 and 8.12.4. Then the conclusions of Theorems 
8-12.2 and 8.12.4 are valid. In addition, once the 
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values of ~hl and ~h3 have been specified in accordance 
with Theorems 8.12.2 and 8.12.4, the value of any 
phase q% which is linearly dependent on the pair 
~h~, ~h3 is uniquely determined. Any phase ~h which 
is rationally dependent on the pair q%1, ~h3 is also 
linearly dependent on this pair, whence its value is 
uniquely determined, provided that  the pair ~hl, ~h3 
is primitive, i.e. provided that  ha+k3+/a = ±1. 

TH~OR~ 8.12.6. Let the three phases ~hl, ~h2, and 
~ 3  be as in Theorems 8.12.2-8.12.4. Then the con- 
clusions of Theorems 8.12.2-8.12.4 are valid. In ad- 
dition, once the values of ~hl, ~h2 and ~h3 have been 
specified in accordance with Theorems 8.12.2-8-12.4, 
then the value of any phase ~h which is linearly de- 
pendent on the set ~hl, ~2,  ~h3 is uniquely determined. 
Any phase ~h, of necessity rationally dependent on 
the triple ~hi, ~h2, ~h3, is also linearly dependent on 
this triple, whence its value is uniquely determined, 
provided that  the triple ~hl, ~2,  ~h3 is primitive; i.e. 
provided that  h a + lca + 1 a = ± 1. 

T~V.OR~ 8.12-7. A single phase ~ is a structure 
seminvariant if, and only if, h + k + l  = 0. 

Proof: Theorem 7.5. 
THEORE~ 8"12"8. Let the functional form for the 

structure factor be fixed. The value of any phase 
~0h~ which is linearly semi-independent (i.e. 
h~+kl+l  ~ # 0) may be specified arbitrarily. Once this 
is done, then the value of any phase ~h which is 
linearly semi-dependent on ~h~ is uniquely determined. 
Any phase ~ ,  of necessity rationally semi-dependent 
on ~hl, is also linearly semi-dependent on ~hl, whence 
its value is uniquely determined, provided that  q%~ is 
semi-primitive, i.e. provided that  h~ + k~ +/1 = + 1. 

8.13. Type 3P22 

For Type 3P22 the permissible origins coincide with 
those for Type 1P222. Hence Theorems 8.02.1-8.02.4 
for Type 1P222 are valid also for Type 3P22. 

T~EOR~M 8"13"1. A single phase ~h iS a structure 
seminvariant if, and only if, h + k + l  is even. 

T~OREM 8"13"2. Let the functional form for the 
structure factor be fixed. Any phase ~ 1  which is 
linearly semi-independent (i.e. h l + k l + l  1 is odd) has 
just two possible values, and these differ from each 
other by z. Either one of these two values for ~hl may 
be chosen. Once this is done, then the value of any 
phase ~h, of necessity linearly semi-dependent on ~hl, 
is uniquely determined. 
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