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Structure Invariants and Seminvariants for Non-Centrosymmetric Space Groups
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The nature of the dependence of phase on the choice of origin is clarified for the non-centrosym-
metric space groups by means of special linear combinations of the phases, the structure invariants
and seminvariants. The theory yields simple answers to the following questions: Which phases
have values determined uniquely by the crystal structure and independent of the choice of origin ?
If the values of certain phases are specified, what phases have values which are then uniquely
determined by the structure ? The values of which phases are to be specified in order to fix the origin

uniquely ?

Simple procedures for fixing the origin by suitably specifying the values of certain phases are

described in detail.

1. Introduction

With the recent development of direct methods of
phase determination the problem of choosing an origin
by suitably specifying the values of an appropriate
set of phases has assumed greater importance. The
complete solution of this problem for the centro-
symmetric space groups by means of the structure
invariants and seminvariants has been given in our
Monograph (Hauptman & Karle, 1953). This paper is
devoted to the solution of the same problem for the
non-centrosymmetric space groups. Owing to limita-
tions of space, only a few typical proofs are given.
However, the definitions and theorems are here ar-
ranged in logical order, and most of the missing proofs
may be readily supplied.

A preliminary section showing the relation of this
problem to the phase problem is given first.

2. The phase problem
The structure factor Fy, is defined by means of

Fy = [Fy exp [ign] = X+i7, (21)
N/n

X = glfjhé(h, xja y;: zj) ’ (22)
Nin

Y =7é‘1fjh77(h’ xj’ yy's zj) ’ (2'3)

where N is the number of atoms in the unit cell, » is
the order of the space group, f; is the atomic scattering
factor, z;, y;, z; are the coordinates of the jth atom,
and £ and 7 are trigonometric functions which depend
upon the space group, e.g. for P1

& = cos 2a(ha+ky+1z) , (2-4)
(2-5)

Roughly speaking, the phase problem is the problem
of determining the phases gy of the structure factors

7 = sin 2n(he+ky+1z) .

Fh, defined by (2-1)-(2-3), given the magnitudes of
the F, and the values of the Jfn for a sufficiently
large number of vectors h.

The crystal structure alone does not, however,
determine the values of all the phases (see, for ex-
ample, Okaya & Nitta, 1952), because (2-1)-(2-3)
imply that an appropriate origin has been selected.
In fact, both the functional forms of & and # and the
values of the atomic coordinates z;, y;, 2; depend upon
the choice of origin. The magnitude |Fy| is, of course,
independent of the choice of origin. However, as will
be seen, there always exist certain linear combinations
of the phases whose values (reduced modulo 27, but
always in the interval —n < ¢ < ) depend upon the
structure alone and are independent of the choice of
permissible origin (to be precisely defined later), and
therefore of the functional form of the structure factor
also. In analogy with centrosymmetric structures, we
shall call these linear combinations of the phases the
structure invariants. Furthermore, for a fized functional
Sform of the structure factor (i.e. for & and #), there
always exist certain linear combinations of the phases
whose values (again reduced modulo 27) depend upon
the structure alone and are independent of the choice
of origin permitted by the chosen functional form for
the structure factor. These linear combinations of the
phases will be called the structure seminvariants. It
will be seen that the structure seminvariants are in-
dependent of the chosen fixed functional form for the
structure factor. While the structure seminvariants
are determined by the space group and the choice of
unit cell, their values, for a given structure, do depend
on the chosen functional form for the structure factor.
Evidently every structure invariant is also a structure
seminvariant. In fact those structure seminvariants
whose values are independent of the chosen functional
form for the structure factor coincide with the strue-
ture invariants.

Although the crystal structure determines the values
of the structure invariants, the magnitudes of the
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structure factors do not. In fact, if S is any structure
then the enantiomorphous 3 tructure §’, obtained by
reflecting S through a point, has the same set of struc-
ture factor magnitudes as S.* However, as will be
seen, the sign of any structure invariant for S is op-
posite to that of the corresponding invariant for S’
(with the trivial exception that the value of a structure
invariant is 7 for both structures). In other words the
magnitudes of the structure factors determine only
the magnitudes of the structure invariants. It is there-
fore desirable to introduce a new concept, that of the
intensity invariant. The intensity invariants are those
structure invariants whose values, as a consequence of
the space-group symmetry, are either 0 or z. Hence any
intensity invariant not only has a unique value in-
dependent of the choice of permissible origin but also
of the choice of structure S or §’. In short, the values
of the intensity invariants depend only on the mag-
nitudes of the structure factors.

In formulating the phase problem it is not only
necessary to take into account the need to specify the
origint but also to decide between the two enantio-
morphous structures S and $’. In order to distinguish
between the structures S and S’ it is sufficient to
specify arbitrarily the sign of any one structure in-
variant the magnitude of which is different from 0
and 7 (cf. chap. 6 of our Monograph).

The phase problem may be accurately described as
the problem of determining the values of the structure
invariants for either of the two enantiomorphous
structures S, S’ once a sufficiently large number of
structure-factor magnitudes has been given (assuming
as always that the atomic structure factors are known).
Alternatively, the phase problem is the problem of
determining the values of the structure seminvariants
for either of the two enantiomorphous structures S, S,
for each fixed functional form of structure factor, once
a sufficiently large number of structure-factor mag-
nitudes is known. The phases may then be obtained
from the values of the structure seminvariants (or
invariants) by fixing the origin. To show how this may
be done by suitably specifying the values of an ap-
propriate set of phases is a major aim of this paper.

3. Linear dependence and independence

First the concept of linear dependence modulo
@ = (wy, Wy, - .., w,), where the w; are arbitrary in-
tegers, is introduced since it permits the statement of
general conclusions in a convenient and concise fashion.
In the case that the w; are all zero this concept coin-
cides with the ordinary one of linear dependence. If

* We assume in this paper that the solution to the phase
problem is essentially unique, i.e. that S and S’ are the only
structures having the given set of structure-factor magnitudes.

T We assume a fixed reference frame except for transla-
tions, and the problem of distinguishing between permissible
reference frames (when they are distinet) is postponed (Hypo-
thesis B, § 7, footnote).

the w; are all equal to 2 this concept reduces to that of
linear dependence modulo 2 previously described in
chap. 2 of our Monograph. We shall need the more
general concept in which the w; are arbitrary integers.

We discuss vectors h = (&, ky, ..., k,) all of whose
p components are integers. The vector h is said to be
divisible by w if the following two conditions are ful-
filled :

1. w; = 0 implies that h; = 0;
2. w; # 0 implies that &; is divisible by w;.

In short h is divisible by @ if there exist p integers
g;,1=1,2, ..., p,suchthat b; = qw;,2=1,2, ..., p.
We then write

h =0 (mod w) (3-1)
and say that h is congruent to zero modulo w. In
particular, taking p = 1, the integer % is congruent
to zero modulo 0 if, and only if, & = 0; % is congruent
to zero modulo w = 0 if, and only if, » is divisible
by w. If h is not congruent to zero modulo @ then
h is said to be incongruent to zero modulo w. Two
vectors h; and h, are congruent modulo @ if the dif-
ference h;—h, is divisible by w; and the notation

h; = h, (mod w) (3-2)
is used.

A set of n vectors h;,j=1,2,...,%,(n >1), is
said to be linearly dependent modulo @ if there exists
a set of » integers a;,j = 1,2, ..., n, at least one of
which is incongruent to zero modulo w; for every
(1 = 1,2, ..., p), such that

n

2 ah; =0 (mod w) .

A 1777
i=1

(3-3)

Otherwise the set h; is said to be linearly independent
modulo @. '

The vector h is linearly dependent modulo @ on,
or linearly independent modulo @ of, the set
h,7=1,2,...,n(n > 1), according as there exist
or there do not exist = integers a,j=1,2,...,n,
some or all of which may be zero, such that

h = ¥ a;h; (mod @) . (3-4)
=1
In particular, any vector h divisible by @ is linearly
dependent modulo @ on any set of vectors since every
a@; in (3-4) may then be taken equal to zero.

In case w; = 0 for every 7 our concepts reduce to
ordinary linear dependence and independence, and the
term ‘modulo @’ will usually be omitted. The following
two theorems are well known:

TarorEM 3:1. If n > p, the set of = vectors
h;,5=1,2,...,n, is linearly dependent.

TrrorEM 3-2. If n < p, the set of n vectors
h; = (hjy, Byp, ..., hy), §5=1,2, ..., m, is linearly de-
pendent if, and only if, every nxn sub-determinant
of the nxp matrix
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hll k12 h’lp
H — 21 kzz 2p (3,5)
k;tl hnz knp

vanishes.

4. Rational dependence and independence

The vector h is rationally dependent modulo @ on,
or rationally independent modulo @ of, the set
h;,j=1,2,...,n,(n > 1), according as there exist
or there do not exist » rational numbers a;,j=1,2,...,n,
some or all of which may be zero, such that
n
h= Zajhj (mod w) . (4-1)
=1

The following theorem is an immediate consequence
of the previous definitions.

TaEOREM 4-1. If the vector h is linearly dependent
modulo @ on the set h,j7=1,2,...,n,2 >1, then
h is rationally dependent modulo @ on the set h,.

The converse of Theorem 4-1 is not true. However,
we obtain a partial converse of this theorem by means
of the important concept of the primitive set.

5. Primitive sets

Let the set M of n vectors h; = (Bj1, hizs « -1y hin)s
J=1,2,...,n, be given. If the set of vectors h; is
linearly dependent we define the modulus m of the
set h; to be zero. If the set h; is linearly independent
then, by Theorem 31, » < p, and the modulus m of
the set h; is defined to be the greatest common divisor
of all 7x7n sub-determinants of the nxp matrix H,
(3:5), not all of whose nxn sub-determinants vanish
(Theorem 3-2). We shall call 7 also the modulus of
the matrix H. If m = 1, then the set of n vectors h;
is said to be primitive. In case m = 0, whence the
rank of the matrix H is n’ < n, then the set M of =
vectors h; will also be called primitive provided that
there exists a subset M’ of M, consisting of n’ vectors,
which constitutes a primitive linearly independent
basis for M, i.e. every vector of M is rationally
dependent on the set of n’ vectors M’. In particular,
if » =p, then the linearly independent set h; is
primitive if, and only if, the determinant of H is --1.

The importance of the notion of primitive sets is
due to the following fundamental theorem, a partial
converse of Theorem 4-1 when every w; = 0.

TreorEM 5-1. If the vector h = (hy, h,, ..., hy) is
rationally dependent on the primitive, linearly in-
dependent set h;,j =1,2,...,n,1 <n < p, then h
is linearly dependent on the set h,.

Proof': Since h is rationally dependent on the set h,,
there exist n rational numbers a,j=1,2,...,m,
such that

n
h = Za]hj. (5'1)
j=1

Write a = (a,, a,, ..., @,). Then, using matrix nota-
tion, (5-1) becomes

h=aH, (5-2)
where H is given by (3-5) and the product aH means
matrix multiplication. Since the linearly independent
set h; is primitive, the modulus of H is unity. Hence
(Theorem H, Hauptman, 1954) there exists a pxn
matrix ¥ with integer elements such that HY is the
nxn identity matrix. Then (5-2) implies

hY = aHY —a. (5:3)

Since the elements of h and Y are integers, we con-
clude that the elements a; of a = hY are also integers.
In view of (5-1), h is linearly dependent on the set h,.

Next, let there be given a set of n vectors h; and
let at least one component of @ = (w;, w,, ..., w,)
be equal to zero. Suppress those components (if any)
of each of the n vectors h; the corresponding compo-
nents of which in w are different from zero. We obtain
the derived set of n vectors h; = (hj;, kj, ..., hiy),
J=1,2,...,n, where p’ > 1 is the number of those
components in @ which are equal to zero. The given
set h; is said to be primitive modulo @ if the derived
set h; is primitive. Evidently, if every w; =0,
i1=1,2,...,p, then the notion of primitive set
modulo @ reduces to that of primitive set.

Let the set of » vectors h,7=1,2,...,n, be
linearly independent, and let n < p. It is well known
that there exists a vector h, ., such that the set of
n+1 vectors h;,j=1,2,...,n+1, is also linearly
independent. We shall make important use of the
following extension of this result.

THEOREM 5-2. There exists a primitive linearly in-
dependent set h, consisting of a single vector. Let the
linearly independent set of » vectors h,j=1,2,...,n,
where n < p, be primitive. Then there exists a vector
h, ., such that the set of n+1 vectors h;, j=1,2, ...,
n+1, is also primitive and linearly independent.

6. Equivalence

In general the functions & and # which define the struc-
ture factor F (equations (2-1)-(2:3)) for each space
group depend upon the choice of origin. Two origins
will be called equivalent if the functional forms for
F to which they give rise are identical. In other words,
two origins are equivalent if they are geometrically
related in the same way to all the symmetry elements.

We retain as primary origin the one selected in
International Tables for X-ray Crystallography, vol.1,
1952. In each space group only certain points, related
in a particularly simple way to the symmetry elements,
can be chosen as possible origins if full advantage of
the space-group symmetry is to be taken. For centro-
symmetric space groups the permissible origins were
defined to be the eight points

€1,85, 83 &=00r },:=1,2,3, (6-1)
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which, for primitive unit cells, coincide with the
centers of symmetry. For non-centrosymmetric space
groups the permissible origins are defined to be those
points which are equivalent to at least one of the eight
points (6:1). Only in this way do we make maximum
use of the space-group symmetry. To allow other points
as permissible origins would lead to fewer structure
invariants, viz. those appropriate to space groups
which are proper subgroups of the space group in
question.

The concept of equivalent origins leads to the notion
of equivalence classes. The set of all permissible origins
may be grouped into classes, and any two origins in
any class are equivalent while no origin in one class
is equivalent to any origin in a different class.

As previously pointed out, the values of only the
structure invariants are determined by the structure,
while the values of the phases depend also on the choice
of permissible origin. It will be seen later that the
origin may be chosen by first selecting the functional
form for the structure factor, i.e. an equivalence class,
and then by specifying in a suitable manner the values
of the phases of an appropriate set of structure factors.

7. The three categories of non-centrosymmetric
space groups

Our discussion is restricted to primitive unit cells since
we thereby avoid the unnecessary complexities result-
ing from the choice of non-primitive unit cells. In
International Tables for X-ray Crystallography,vol.l,
1952, the unit cell is chosen to be primitive for 94
of the 138 non-centrosymmetric space groups. How-
ever, for the remaining 44 space groups, structure
factors appropriate to the choice of a primitive unit
cell are readily obtained. Once this is done our methods
become applicable to these space groups also. Alter-
natively, since the simple transformations from primi-
tive unit cells to the conventional non-primitive unit
cells are well known, our results are readily interpreted
in terms of the latter choice of unit cell. In the mono-
clinic system we have chosen the second setting with
b axis unique.

The structure factor for the general non-centro-
symmetric crystal having N atoms per unit cell may
be written.

N
Fy = 2‘1 Sin exp [27i (ha;+-ky;+1z))] , (7-1)
j=

where the atomic structure factor f; is a function
of h, and the coordinates of the jth atom are z;, ¥;, 2;.
If the origin is shifted to a different point having
coordinates g, ¥,, %, With respect to the first origin,
then z; y;, 2; in (7-1) are replaced by z;—=,, ¥;—Yo.
z;—2,. It is readily verified that Fy in (7-1) is then
replaced by

Fy = Fy exp [—2ni(hzy+kyy+1z,)] , (7-2)

i.e. Fy is multiplied by exp [—2mi(hzy+kyy+12,)]. In

short, the magnitude of Fy remains unchanged while
the phase @n of Fy is replaced by

@n = @n—27(hxy+ky,+1z).

As with centrosymmetric space groups, the non-
centrosymmetric space groups fall into three different
categories depending upon the number of equivalence
classes. Category 1 consists of those space groups having
one equivalence class, Category 2 of those space groups
having two equivalence classes, and Category 3 of
those space groups having four equivalence classes.
As shown in Table 1, each category is further sub-
divided into several types depending upon the nature
of the equivalence classes. Each type is clearly charac-
terized by row 6 of Table 1, the equivalence classes
being defined by the boxes with solid lines.

We give next several definitions which are found
to be convenient.

DerFmITION 7-1. Two numbers ¢ and b are said to
be equivalent if the difference a—b is an integer; the
notation @ = b is used. In particular a is an integer
if, and only if, a = 0.

DerFmviTION 7-2. To each type described in Table 1
we associate a vector w; called the invariant modulus
and a vector @, called the seminvariant modulus and
defined by rows 7 and 8 respectively of Table 1. For
Category 1 the invariant modulus coincides with the
seminvariant modulus and will be referred to simply
as the modulus w.

DermrrioN 7-3. For each of the types described in
Table 1, the vectors h; and h,, associated invariantly
and seminvariantly respectively with the phase g,
are defined by rows 9 and 10 of Table 1. For Category 1,
h; =h;=h.

DeriNtTiON 7-4. For each of the types described
in Table 1, a set of phases is said to be linearly de-
pendent or independent according as the set of in-
variantly associated vectors is linearly dependent or
independent modulo ;, where @; is the invariant
modulus of the type. The phase gy is linearly (ration-
ally) dependent on, or linearly (rationally) independent
of, the set of phases gn; according as the vector in-
variantly associated with @y is linearly (rationally)
dependent modulo @; on, or linearly (rationally) in-
dependent modulo w; of, the set of vectors invariantly
associated with the set gn;.

DrrintTION 7-5. For each of the types described
in Table 1, a set of phases @p, is said to be linearly
semi-dependent or semi-independent according as the
set of seminvariantly associated vectors is linearly
dependent or independent modulo w,, where w; is the
seminvariant modulus of the type. The phase ¢y is
linearly (rationally) semi-dependent on, or linearly
(rationally) semi-independent of, the set of phases g,
according as the vector seminvariantly associated with
@n is linearly (rationally) dependent modulo @; on,
or linearly (rationally) independent modulo @, of, the
set of vectors seminvariantly associated with the
set @n;.
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DEeFINTTION 7-6. For each of the types described in
Table 1, a set of phases g, is said to be primitive if
the set of invariantly associated vectors is primitive
modulo @;, where @; is the invariant modulus of the
type.

DEerFINTIION 7-7. For each of the types described in
Table 1, a set of phases s, is said to be semi-primitive
if the set of seminvariantly associated vectors is prim-
itive modulo w,, where @, is the seminvariant modulus
of the type.

Table 1 shows that the concepts of invariance and
seminvariance coincide for Category 1.

It is now possible to state the following five funda-
mental theorems which summarize briefly some of the
main results of this paper:

Mam~x THEOREM 7-1. The crystal structure deter-
mines the values of all the structure invariants. For
each fixed functional form for the structure factor,
the crystal structure determines the values of all the
structure seminvariants.

Mar~ TEEOREM 7-2. The value of any structure
invariant for the structure S is the negative of the
corresponding structure invariant for the enantio-
morphous structure 8’ obtained by reflecting S through
a point (with the trivial exception that a structure
invariant may have the value s for both structures).

Mar~ THEOREM 7-3. A sufficient number of structure
factor magnitudes determines the magnitudes of all
the structure invariants and the values of all the
intensity invariants. The sign of any structure in-
variant, the value of which is different from 0 and 7,
may be specified arbitrarily. Once this is done (thus
distinguishing between the two enantiomorphous struc-
tures S and S’ permitted by the structure factor mag-
nitudes) then the values (not merely the magnitudes)
of all remaining structure invariants are uniquely
determined by the structure-factor magnitudes. In
addition, if a functional form for the structure factor
is chosen, then the values of all the structure semin-
variants are also uniquely determined.*

Maix THEOREM 7-4. For each type the structure
invariants are the linear combinations

héAmpn, (7-3)
where the Ay are integers satisfying
Z'Ahhi =0 (mOd w,) 3 (7'4)
h

h; is the vector invariantly associated with the phase
@n, @; is the invariant modulus of the type, and the

symbol 3 in (7-3) means (as always) that the sum in

(7-3) is to be reduced modulo 27 and —7 < X < 7.
h

* Main theorems 7-2 and 7-3 are valid also for the structure

seminvariants provided that the functional form for the

structure factor is fixed; hence provided that the space group
does not belong to one of the 11 enantiomorphous pairs.

MAIN THEOREM 7-5. For each type the structure
seminvariants are the linear combinations

%Ah% , (7-5)
where the Ay are integers satisfying
3 Aph, = 0 (mod wy) , (7-6)
b

h, is the vector seminvariantly associated with the
phase @n, and @, is the seminvariant modulus of the
type.

The remainder of this paper is devoted to spelling
out in detail simple methods for selecting the or#gin
for each of the thirteen types of non-centrosymmetric
space groups. For each type in Categories 2 and 3 we
give two procedures, first by means of the structure
invariants and secondly by means of the structure
seminvariants. Although, for some of the types, our
methods are capable of yielding somewhat more general
results than those we describe, we give, for the sake
of brevity and clarity, only the simplest procedures.

All the remaining theorems of this paper are valid
under either one of the foliowing hypotheses:

Hypothesis 4: The crystal structure is given; or

Hypothesis B: A sufficiently large number of strue-
ture-factor magnitudes is given (so that, by Theorem
7-3, the magnitudes of all the structure invariants are
determined) and the sign of any one structure in-
variant, the magnitude of which is different from 0
and 7, has been arbitrarily specified (in accordance
with Theorem 7-3).*

The role played by the primitive sets in leading to
a unique choice of origin is especially noteworthy and
should be emphasized at the start. If the set of phases
whose values are specified is not primitive, then the
values of certain of the remaining phases will not be
uniquely determined.

8. The thirteen types of non-centrosymmetric
space groups

8-01. Type 1PO00

TaroreM 8:01-1. No single phase (except the trivial
QPooe) is a structure invariant.

Proof: Theorem 7-4.

TrEOREM 8:01-2. The value of any phase @p,, which
is linearly independent, may be specified arbitrarily.

Once this is done then the value of any phase gn

* In this way we distinguish the two enantiomorphous
structures S, S’ (when they are distinct), or the permissible
reference frames (when they are distinct), or both. In the
case that the magnitude of no structure invariant is different
from 0 or = then their values are independent of the choice
of enantiomorphous structure and of permissible reference
frame. Thus the need of specifying the sign of a structure
invariant does not arise in this case. The same remarks apply
to the structure seminvariants provided that the functional
form for the structure factor has been fixed.
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which is linearly dependent on ¢y, is uniquely deter-
mined. In view of Theorem 5-1, any phase ¢, which
is rationally dependent on Py is also linearly dependent
on gp,, whence its value is umquely detérmined, pro-
vided that @n,, is primitive, i.e. provided that the
greatest common divisor of h,, &,, and [, is unity.

Proof: This is a consequence of Theorems 7-2 and
7-4 since (7-2) implies

1
b2+ kyyo+lizg = o (Pn,—Pny) » (81)
an equation which has solutions z,, ¥, 2, (of necessity
equivalent to 0, 0, 0) for arbitrary choice of value for
®n;» in view of the hypothesis that ¢p, is linearly
igdependent.

TrroREM 8:01-3. The values of any two phases
®h,, Png, constituting a linearly independent set, may
be specified arbitrarily. Once this is done then the
value of any phase ¢y which is linearly dependent
on the pair ¢n,, ¢y, is uniquely determined. In view
of Theorem 5-1, any phase ¢, which is rationally
dependent on the pair @g,, @n, is also linearly depen-
dent on this pair, whence its value is uniquely deter-
mined, provided that the pair ¢n,, @n, is primitive,
i.e. provided that the greatest common divisor of

hy ky by Ly k1

By ety | 4 |k,

is unity.

THEOREM 8-01-4. The values of any three phases
@hy> Phy Phy, constituting a linearly independent set,
may be specified arbitrarily. Once this is done then
the value of any phase ¢y which is linearly dependent
on the triple @n,, ®ny, Pn, is uniquely determined. In
view of Theorem 5-1, any phase @y, of necessity ra-
tionally dependent on the triple @n,, @n, @n,, is also
linearly dependent on this triple, whence its value is
uniquely determined, provided that the triple
@Phy» Phys Prg 18 primitive, i.e. provided that

hy by Ly

hy ko 1,

hy k3 U

=+1.

8:02. Type 1P222

TrEOREM 8:02-1. A single phase ¢ is a structure
invariant, i.e. its value is uniquely determined, if,
and only if, %, k and [ are all even.

Proof: Theorem 7-4.

TaeoreM 8-02-2. Any phase ¢, which is linearly
independent, has just two possible values, and these
differ from each other by z. Either one of these two
values may be chosen. Once this is done then the
value of any phase @ which is linearly dependent on
®n, is uniquely determined.

Proof : Equation (7-2) implies (8-1) where now the
permissible origins g, ¥, 2, coincide with the eight
points (6-1). Hence any two different values for ¢,
differ by 7, and either one of these two possible values

may be realized by suitably choosing the origin since
®n, is linearly independent. The theorem then follows
from Theorems 7-2 and 7-4.

THEOREM 8-02-3. Let gy, and gp, be any two phases
congtituting a linearly independent set. In accordance
with Theorem 8:02-2 either one of the two possible
values of ¢pn, may be chosen, and either one of the
two possible values of gu, may be chosen. Once this
is done then the value of any phase ¢y, which is linearly
dependent on the pair gp,, ¢n, is uniquely determined.

THEOREM 8-02-4. Let @n,, @n,, and @p, be any three
phases constituting a linearly independent set. In
accordance with Theorem 8-02-2 either one of the two
possible values of ¢n, may be chosen, either one of the
two possible values of gpn, may be chosen, and either
one of the two possible values of ¢,, may be chosen.
Once this is done then the value of any phase gy, of
necessity linearly dependent on the triple @p,, @n,, Pn,,
is uniquely determined.

8:03. Type 1P202

TrEOREM 8:03-1. A single phase ¢y is a structure
invariant, i.e. its value is uniquely determined, if, and
only if, £ and ! are both even and & = 0.

Proof: Theorem 7-4.

TaroREM 8:03-2. Any phase @, o, which is linearly
independent (i.e. &, and [, are not both even) has just
two possible values, and these differ from each other
by 7. Either one of these two values may be chosen.
Once this is done, then the value of any phase gp
which is linearly dependent on ¢y, is uniquely deter-
mined.

TerOREM 8:03-3. Let A3 and I; both be even. Then
the value of any phase gn, which is linearly indepen-
dent (i.e. k3 == 0) may be specified arbitrarily. Once
this is done then the value of any phase gn which is
linearly dependent on ¢y, (i.e. 2 and ! are both even
and k is divisible by k;) is uniquely determined. In
view of Theorem 5-1, any phase @y which is rationally
dependent on @, is also linearly dependent on gy,
whence its value is uniquely determined, provided that
@n, is primitive, i.e. provided that k; = +1.

TaEOREM 8-03-4. Let ¢y 0, and @, be any two
phases constituting a linearly independent set. In
accordance with Theorem 8:03-2 either one of the two
possible values of gn, may be chosen, and either one
of the two possible values of @y, may be chosen. Once
this is done then the value of any phase ¢y which is
linearly dependent on the pair ¢n, @n, is uniquely
determined.

TrEOREM 8-03-5. Let k; = 0 and %; and ; be both
even. Let ¢p, and ¢n, be any two phases constituting
a linearly independent set (i.e. %, and I, are not both
even, and k; = 0). In accordance with Theorems 8-03-2
and 8:03-3 either one of the two possible values of g,
may be chosen while the value of ¢, may be specified
arbitrarily. Once this is done then the value of any
phase @, which is linearly dependent on the pair

4%
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®hys Ph, is uniquely determined. In view of Theorem
5-1, any phase @p which is rationally dependent on
the pair @n,, @n, is also linearly dependent on this pair,
whence its value is uniquely determined, provided
that the pair gn,, @n, is primitive, i.e. provided that
ky = +1.

3THEOREM 8-03-6. Let k; =k, = 0 and %3 and I3 be
both even. Let @n,, gn, and @n, be any three phases
constituting a linearly independent set. In accordance
with Theorems 8:03-3 and 8:03-4 either one of the
two possible values of gn, may be chosen and either
one of the two possible values of gn, may be chosen,
while the value of @n, may be specified arbitrarily.
Once this is done then the value of any phase @y
which is linearly dependent on the set @n,, Pn,, ¢n,
(i.e. k is a multiple of k;) is uniquely determined. In
view of Theorem 5-1 any phase g, of necessity ration-
ally dependent on the triple @n,, Pn, Pn, is also
linearly dependent on this triple, whence its value is
uniquely determined, provided that the triple
®hy> Phy> Png IS primitive, i.e. provided that ky=+1.

8:04. Type 1P020

THEOREM 8-04-1. A single phase gy is a structure
invariant if, and only if, 2 =7 =0 and k is even.

Proof: Theorem 7-4.

THEOREM 8:04:2. Any phase @y, 9, which is linearly
independent (i.e. k, is odd), has just two possible
values, and these differ from each other by z. Either
one of these two values may be chosen. Once this is
done then the value of any phase @y which is linearly
dependent on ¢, (ie. A=1=0 and k is odd) is
uniquely determined.

TEEOREM 8:04:3. Let k, be even. Then the value of
any phase @n, which is linearly independent (i.e.
h, and l, are not both zero) may be specified ar-
bitrarily. Once this is done then the value of any phase
@n which is linearly dependent on gn, is uniquely
determined. In view of Theorem 5-1, any phase ¢n
which is rationally dependent on ¢n, is also linearly
dependent on @p,, whence its value is uniquely deter-
mined, provided that ¢n, is primitive, i.e. provided
that A, and I, are relatively prime.

THEEOREM 8:04:4. Let %k, and k; be even. Then the
values of any two phases @n,, @n,; constituting a
linearly independent set, may be specified arbitrarily.
Once this is done then the value of any phase ¢p
which is linearly dependent on the pair ¢n,, ¢n, is
uniquely determined. In view of Theorem 5-1, any
phase @n which is rationally dependent on the pair
®hy» Ph i also linearly dependent on this pair, whence
its value is uniquely determined, provided that the
pair is primitive, i.e. provided that

by by
3 “3

TaEOREM 8:04:5. Let h; =1, = 0 and k, be even.
Let @n, and @p, be any two phases which constitute
a linearly independent set (i.e. &, is odd and %, and I,

=41.

are not both zero). In accordance with Theorems
8-04-2 and 8-04-3, either one of the two possible values
of gn, may be chosen while the value of @n, may be
specified arbitrarily. Once this is done, then the value
of any phase gy which is linearly dependent on the pair
®h,> P, is uniquely determined. In view of Theorem
5-1, any phase ¢y which is rationally dependent on
the pair @n,, @n, is also linearly dependent on this pair,
whence its value is uniquely determined, provided that
the pair ¢u, @n, is primitive, i.e. provided that A,
and [, are relatively prime.

THEOREM 8-04-6. Let A, =1, =0 and %k, and %,
both be even. Let the three phases @n,, ¥n, @n, con-
stitute a linearly independent set, i.e. k; is odd and

kz l2

l h3 l3

In accordance with Theorems 8:04:4 and 8:04-6, either
one of the two possible values of ¢n, may be chosen,
while the values of gy, and @y, may be specified ar-
bitrarily. Once this is done then the value of any phase
@n which is linearly dependent on the set @n,, @n, @n,
is uniquely determined. In view of Theorem 5-1 any
phase @n, of necessity rationally dependent on the
triple @n,, @n,, Pn,, is also linearly dependent on this
triple, whence its value is uniquely determined, pro-

vided that the triple g, @n,, @n, is primitive, i.e.
provided that

+0.

hy 1
by Ly

=41.

8-05. Type 1P220

Evidently Theorems 8-03-1-8-03-6 for Type 1P202
are valid also for Type 1P220, except for the obvious

changes involving the interchange of the second and
third indices.

8-06. Type 2P20

The permissible origins coincide with those for Type
1P220. Hence Theorems 8-03-1-8-03-6 for Type 1P202
are valid also for Type 2P20, except for the changes
involving the interchange of the second and third
indices.

TrEOREM 8:06-1. A single phase gy is a structure
seminvariant, i.e. for a fixed functional form for the
structure factor its value is uniquely determined, if
and only if A+% is even and [ = 0.

Proof: Theorem 7-5.

THEOREM 8:06-2. Let the functionel form for the
structure factor be fixed. Let I, = 0. 1 hen any phase
@n, Which is linearly semi-independent (i.e. k,+k, is
odd) has just two possible values, and these differ
from each other by 7. Either one of these two values
may be chosen. Once this is done then the value of any
phase @n which is linearly semi-dependent on @y,
(i.e. I = 0) is uniquely determined.

TaeorEM 8:06-3. Let the functional form for the
structure factor be fixed. Let k,+k, be even. Then the
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value of any phase gn, which is linearly semi-inde-
pendent (i.e. I, & 0) may be specified arbitrarily. Once
this is done then the value of any phase g, which is
linearly semi-dependent on g, (i.e. k+k is even and
1 is divisible by [,) is uniquely determined. In view of
Theorem 5-1, any phase @n which is rationally semi-
dependent on ¢, is also linearly semi-dependent on
@n,, Whence its value is uniquely determined, provided
that @p, is semi-primitive, i.e. provided that I, = +1.

THEEOREM 8:06-4. Let the functional form for the
structure factor be fixed. Let I, = 0 and k,+k, be
even. Let ¢p, and gu, be any two phases which con-
stitute a linearly semi-independent set (i.e. k;+k; is
odd and [/, #+ 0). In accordance with Theorems 8-06-2
and 8-06-3, either one of the two possible values of gp,
may be chosen while the value of gy, may be specified
arbitrarily. Once this is done then the value of any
phase @y which is linearly semi-dependent on the pair
@n;» Pn, is uniquely determined. In view of Theorem
51, any phase ¢pn, of necessity rationally semi-
dependent on the pair @n,, @n,, is also linearly semi-
dependent on this pair, whence its value is uniquely
determined, provided that the pair ¢n,, ¢n, is semi-
primitive, i.e. provided that I, = £1.

8:07. Type 2P22

The permissible origins coincide with those for
Type 1P222. Hence Theorems 8-02-1-8-02-4 for Type
1P222 are valid also for Type 2P22.

TaEOREM 8-07-1. A single phase gy is a structure
seminvariant if, and only if, 2+% and ! are both even.

Proof: Theorem 7-5.

THEOREM 8:07-2. Let the functional form for the
structure factor be fixed. Any phase g@pn, which is
linearly semi-independent (i.e. 2,4k, and [, are not
both even) has just two possible values; these differ
from each other by 7. Either one of these two values
may be chosen. Once this is done then the value of
any phase gy which is linearly semi-dependent on @p,
is uniquely determined.

TeEorREM 8:07-3. Let the functional form for the
structure factor be fixed. Let ¢pn, and ¢n, be any two
phases which constitute a linearly semi-independent
pair. In accordance with Theorem 8-07-2, either one
of the two possible values of @n, may be chosen, and
either one of the two possible values of gn, may be
chosen. Once this is done then the value of any phase
@n, of necessity linearly semi-dependent on the pair
@hy» Phy, i8 uniquely determined.

8:08. T'ype 3P30

TaEOREM 8-08-1. A single phase ¢y is a structure
invariant if, and only if, A=k =0 or 2 or 4 (mod 6)
and [ =0.

Proof: Theorem 7-4.

TarorEM 8:08-2. Let I, = 0 and ¢u, be any phase
which is linearly independent. Then ¢p, has just six
possible values, and these form an arithmetic pro-
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gression with common difference equal to /3. Any
one of these six values for ¢, may be chosen. Once
this is done then the value of any phase gp which is
linearly dependent on gy, is uniquely determined.

TaeorREM 8:08-3. Let I, =, = 0 and let gu, and
@n, be any two phases each of which is linearly in-
dependent and neither of which is linearly dependent
on the other. (We note however that the pair @n,, @n,
is of necessity linearly dependent.) In accordance
with Theorem 8-08-2, the value of gn, may be arbi-
trarily chosen from a certain set of six numbers in
arithmetic progression with common difference 7/3.
Once this is done then there remain only two possible
values for @p,, and these differ from each other by .
Either one of these two possible values for g, may
be chosen. Once this is done then the value of any
phase @n which is linearly dependent on the pair
®n,» Pn, (. I = 0) is uniquely determined.

THEEOREM 8:08-4. Let hy+2k; = 2h;+k; = 0 (mod 6)
and let @p, be any phase which is linearly independent
(i.e. I3 %= 0). Then the value of ¢n, may be arbitrarily
specified. Once this is done then the value of any
phase gy, which is linearly dependent on ¢u, is uniquely
determined. In view of Theorem 5-1, any phase ¢n
which is rationally dependent on gy, is also linearly
dependent on @y, whence its value is uniquely deter-
mined, provided that gp, is primitive, i.e. provided
that I; = +1.

THEOREM 8:08-5. Let gn, and gy, be as in Theorems
8:08-2 and 8:08-4. Then the conclusions of Theorems
8:08-2 and 8-08-4 are valid. In addition, once the values
of gn, and gp, have been specified in accordance with
Theorems 8:08-2 and 8-:08-4 then the value of any
phase @, which is linearly dependent on the pair
®h,» Pn, 18 uniquely determined.

TrEOREM 8-08-6. Let the phases gn,, @n,, and gn,
be as in Theorems 8-08-3 and 8:08-4. Then the con-
clusions of Theorems 8-08-3 and 8-08-4 hold. In addi-
tion, once the values of @n,, @n, and @y, have been
specified in accordance with Theorems 8-08-3 and
8:08-4, then the value of any phase @y which is linearly
dependent on the triple @n,, @n,, Pn, is uniquely de-
termined. Any phase @p, of necessity rationally de-
pendent on the triple @n,, @n,, Pn, is also linearly
dependent on this triple, whence its value is uniquely
determined, provided that the triple is primitive, i.e.
provided that I; = +1.

TaEOREM 8:08-7. A single phase ¢n is a structure
seminvariant if, and only if, 2 = k (mod 3) and [ = 0.

Proof: Theorem 7-5.

TeEOREM 8:08:8. Let the functional form for the
structure factor be fized. Let /, = 0. Any phase @n,
which is linearly semi-independent (i.e. , == %, (mod 3))
has just three possible values, and these form an
arithmetic progression with common difference equal
to 27/3. Any one of these three values for @pn, may be
chosen. Once this is done then the value of any phase
@n which is linearly semi-dependent on ¢p, (i.e. =0)
is uniquely determined.
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TeeorEM 8:08-9. Let the functional form for the
structure factor be fixed. Let &, = k, (mod 3) and let
@n, be any phase which is linearly semi-independent
(i.e. I, + 0). Then the value of ¢p, may be specified
arbitrarily. Once this is done then the value of any
phase @n which is linearly semi-dependent on @y, is
uniquely determined. In view of Theorem 5-1, any
phase @n which is rationally semi-dependent on @p,
is also linearly semi-dependent on ¢p,, whence its
value is uniquely determined, provided that gp, is
semi-primitive, i.e. provided that I, = +1.

TrEOREM 8-08-10. Let the functional form for the
structure factor be fixed. Let the phases gn,, ¢n, be
as in Theorems 8:08-7 and 8:08-8 whence they con-
stitute a linearly semi-independent pair. In accordance
with Theorems 8:08-7 and 8:08:8, the value of Pn,
may be chosen arbitrarily from a certain set of three
numbers in arithmetic progression while the value of
@n, may be specified arbitrarily. Once this is done then
the value of any phase ¢n which is linearly semi-
dependent on the pair gn,, @n, is uniquely determined.
In view of Theorem 5-1, any phase @n, of necessity
rationally semi-dependent on the pair @p,, @n, is also
linearly semi-dependent on this pair, whence its value is
uniquely determined, provided that the pair gp,, @n,
is semi-primitive, i.e. provided that I, = +1.

8:09. Type 3P32

TaEOREM 8-09-1. A single phase ¢y is a structure
invariant if, and only if, A=%=0 or 2 or 4 (mod 6)
and 7 = 0 (mod 2).

Proof: Theorem 7-4.

THEOREM 8:09-2. Let /; = 0 (mod 2) and ¢y, be any
phase which is linearly independent. Then ¢y, has
just six possible values, and these form an arithmetic
progression with common difference equal to n/3.
Any one of these six values for gpn, may be chosen.
Once this is done then the value of any phase @y
which is linearly dependent on @y, is uniquely deter-
mined.

THEOREM 8-09-3. Let I, =1, =0 (mod 2) and let
¢n, and @n, be any two phases each of which is
linearly independent and neither of which is linearly
dependent on the other. (As in Theorem 8-08-3 the
Pair @p,, gn, is of necessity linearly dependent.) In
accordance with Theorem 8:09-2, the value of ®n,
may be arbitrarily chosen from a certain set of six
numbers in arithmetic progression with common dif-
ference 7/3. Once this is done then there remain only
two possible values for gy,, and these differ from each
other by =. Either one of these two possible values
for gn, may be chosen. Once this is done then the value
of any phase @y which is linearly dependent on the pair
®n,» Ph, (i.e. [ is even) is uniquely determined.

THEOREM 8:09-4. Let h3+2k, = 2h3+k, = 0 (mod 6)
and let @y, be any phase which is linearly independent
(i.e. I3 is odd). Then ¢p, has just two possible values,
and these differ from each other by m. Either one of
these two values for ¢y, may be chosen. Once this is

done then the value of any phase @), which is linearly
dependent on ¢y, is uniquely determined.

TrEOREM 8-09-5. Let @p, and gp, be as in Theorems
8:09-2 and 8:09-4. Then the conclusions of Theorems
8:09-2 and 8:09-4 are valid. In addition, once the values
of gn, and @n, have been specified in accordance with
Theorems 8-09-2 and 8-:09-4 then the value of any phase
@n which is linearly dependent on the pair ¢p,, gn,
is uniquely determined.

TeEEOREM 8:09'6. Let the phases @n,, @n,, and @n,
be as in Theorems 8-09-3 and 8:09-4. Then the con-
clusions of Theorems 8-09-3 and 8:09-4 hold. In addi-
tion, once the values of @n,, gn,, and gn, have been
specified in accordance with Theorems 8-:09-3 and
8:09-4, then the value of any phase gn, of necessity
linearly dependent on the triple @n,, @y @ny IS
uniquely determined.

TaEOREM 8-09-7. A single phase ¢p is a structure
seminvariant if, and only if, =% (mod 3) and 1=0
(mod 2).

Proof: Theorem 7-5.

THEOREM 8:09-8. Let the functional form for-the
structure factor be fixed. Let I, be even. Any phase
@n, Wwhich is linearly semi-independent (i.e. &, =k,
(mod 3)) has just three possible values, and these form
an arithmetic progression with common difference
equal to 27/3. Any one of these three values for g,
may be chosen. Once this is done, then the value of
any phase @n which is linearly semi-dependent on @y,
(i.e. I is even) is uniquely determined.

TurorEM 8:09'9. Let the functional form for the
structure factor be fixed. Let &, = %, (mod 3) and let
@n, be any phase which is linearly semi-independent
(i.e. I, is odd). Then @y, has just two possible values,
and these differ from each other by z. Either one of
these two values for ¢, may be chosen. Once this is
done, then the value of any phase which is linearly
semi-dependent on ¢y, is uniquely determined.

THEOREM 8-09-10. Let the functional form for the
structure factor be fixed. Let the phases gn,, gn, be
as in Theorems 8-09-8 and 8:09-9 whence they con-
stitute a linearly semi-independent pair. In accordance
with Theorems 8-09-8 and 8-09-9, the value of @, may
be chosen arbitrarily from a certain set of three
numbers in arithmetic progression while the value of
@n, may be chosen arbitrarily from a certain set of two
numbers. Once this is done, then the value of any phase
@n, of necessity linearly semi-dependent on the pair
®hy»> Pny, 1S uniquely determined.

8:10. Type 3P,0

For Type 3P,0 the permissible origins coincide with
those for Type 1P220. Hence Theorems 8-03-1-8-03-6
for Type 1P202 are valid also for Type 3P,0, except
for the changes involving the interchange of the second
and third indices.

TeEOREM 8:10-1. A single phase ¢y is a structure
seminvariant -if, and only if, [ = 0.

THEOREM 8-10-2. Let the functional form for the
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structure factor be fixed. The value of any phase ®n,
which is linearly semi-independent (i.e. l; & 0) may
be specified arbitrarily. Once this is done, then the
value of any phase @n which is linearly semi-dependent
on @p, is uniquely determined. In view of Theorem 5-1,
any phase gp, of necessity rationally semi-dependent
on gn,, is also linearly semi-dependent on gn,, whence
its value is uniquely determined, provided that the
phase @, is semi-primitive, i.e. provided that I,=+1.

8-11. Type 3P,2

For Type 3P,2 the permissible origins coincide with
those for Type 1P222. Hence Theorems 8-02-1-8-02-4
for Type 1P222 are valid also for Type 3P,2.

THEOREM 8:11-1. A single phase ¢y is a structure
seminvariant if, and only if, [ is even.

TaEOREM 8-11-2. Let the functional form for the
structure factor be fixed. Any phase @p, which is
linearly semi-independent (i.e. [, is odd) has just two
possible values, and these differ from each other by .
Either one of these two values for gy, may be chosen.
Once this is done, then the value of any phase g, of
necessity linearly semi-dependent on gy, is uniquely
determined.

8-12. Type 3P,0

TEEOREM 8:12-1. A single phase ¢y is a structure
invariant if, and only if, A=k =1[=0 (mod 2) and
h+k+1=0.

Proof: Theorem 7-4.

TaEoREM 8:122. Let hy+k;+1; = 0,and let gn, be
any phase which is linearly independent. Then g,
has just two possible values, and these differ from each
other by z. Either one of these two values for gy, may
be chosen. Once this is done, then the value of any
phase gp which is linearly dependent on @y, is uniquely
determined.

THEOREM 812:3. Let hy+ky+l = hytkytly =0
and let gn, and @u, be any two phases which con-
stitute a linearly independent pair. In accordance with
Theorem 8-12-2 either one of the two possible values
for @n, may be chosen, and either one of the two
possible values for gp, may be chosen. Once this is
done, then the value of any phase which is linearly
dependent on the pair @y, gn, is uniquely determined.

THEOREM 8-12-4. Let hy+k;+1; be odd, whence the
phase ¢y, is linearly independent. Then the value of
@n; may be specified arbitrarily. Once this is done,
then the value of any phase @n which is linearly
dependent on @y, is uniquely determined. In view of
Theorem 5-1, any phase gn which is rationally de-
pendent on @y, is also linearly dependent on gp,,
whence its value is uniquely determined, provided that
®n, is primitive, i.e. provided that hy+k,+l; = +1.

THEOREM 8-12-5. Let gp, and @p, be as in Theorems
8:12:2 and 8-12-4. Then the conclusions of Theorems
812-2 and 8-12:4 are valid. In addition, once the

values of @p, and @n, have been specified in accordance
with Theorems 8-12-2 and 8-12-4, the value of any
phase @n which is linearly dependent on the pair
®n,> Pn, 18 uniquely determined. Any phase @n Which
is rationally dependent on the pair @n,, @n, is also
linearly dependent on this pair, whence its value is
uniquely determined, provided that the Pair @n,, Pn,
is primitive, i.e. provided that hy+k,+1, = +1.

THEOREM 8:12-6. Let the three phases @ny> Pn,, and
@n, be as in Theorems 8-12-2-8-12:4. Then the con-
clusions of Theorems 8:12:2-8:12-4 are valid. In ad-
dition, once the values of @n,, Pn, and @p, have been
specified in accordance with Theorems 8-12-2-8-12-4,
then the value of any phase g, which is linearly de-
pendent on the set gn,, @n,, @, is uniquely determined.
Any phase gn, of necessity rationally dependent on
the triple gn,, @n,, @n,, is also linearly dependent on
this triple, whence its value is uniquely determined,
provided that the triple @n,, @n,, @n, is primitive, i.e.
provided that h;+k,+1; = +1.

TeEOREM 8'12-7. A single phase ¢y is a structure
seminvariant if, and only if, A+k+I = 0.

Proof: Theorem 7-5.

TuEOREM 8-12:8. Let the functional form for the
structure factor be fixed. The value of any phase
@n, which is linearly semi-independent (i.e.
hy+k;+1; & 0) may be specified arbitrarily. Once this
is done, then the value of any phase @n which is
linearly semi-dependent on gy, is uniquely determined.
Any phase gn, of necessity rationally semi-dependent
on @n,, is also linearly semi-dependent on @n,» Whence
its value is uniquely determined, provided that gp, is
semi-primitive, i.e. provided that A4k, +1, = +1.

8:13. Type 3P,2

For Type 3P,2 the permissible origins coincide with
those for Type 1P222. Hence Theorems 8-02-1-8-02-4
for Type 1P222 are valid -also for Type 3P,2.

TeEEOREM 8:13-1. A single phase gy is a structure
seminvariant if, and only if, A+k-+1 is even.

TaEOREM 8-13-2. Let the functional form for the
structure factor be fixed. Any phase @n, which is
linearly semi-independent (i.e. h;+k,+1; is odd) has
just two possible values, and these differ from each
other by 7. Either one of these two values for p,, may
be chosen. Once this is done, then the value of any
phase gn, of necessity linearly semi-dependent on ®h,»
is uniquely determined.
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